TMA 4295 Statistical Inference IMF/IME/NTNU

Formulaes from Casella & Berger

Theorem 5.2.11 Suppose X_1, \ldots, X_n is a random sample from a pdf or pmf $f(x|\theta)$, where

$$f(x| heta) = h(x)c(heta) \exp\Biggl(\sum_{i=1}^k w_i(heta) t_i(x)\Biggr)$$

is a member of an exponential family. Define statistics T_1, \ldots, T_k by

$$T_i(X_1,\ldots,X_n)=\sum_{j=1}^n t_i(X_j), \quad i=1,\ldots,k.$$

If the set $\{(w_1(\theta), w_2(\theta), \dots, w_k(\theta)), \theta \in \Theta\}$ contains an open subset of \Re^k , then the distribution of (T_1, \dots, T_k) is an exponential family of the form

$$(5.2.6) f_T(u_1,\ldots,u_k|\theta) = H(u_1,\ldots,u_k)[c(\theta)]^n \exp\left(\sum_{i=1}^k w_i(\theta)u_i\right).$$

Definition 5.5.1 A sequence of random variables, X_1, X_2, \ldots , converges in probability to a random variable X if, for every $\epsilon > 0$,

$$\lim_{n\to\infty} P(|X_n-X|\geq \epsilon)=0 \quad \text{or, equivalently,} \quad \lim_{n\to\infty} P(|X_n-X|<\epsilon)=1.$$

Definition 5.5.6 A sequence of random variables, X_1, X_2, \ldots , converges almost surely to a random variable X if, for every $\epsilon > 0$,

$$P(\lim_{n\to\infty}|X_n-X|<\epsilon)=1.$$

Theorem 5.5.9 (Strong Law of Large Numbers) Let X_1, X_2, \ldots be iid random variables with $EX_i = \mu$ and $Var X_i = \sigma^2 < \infty$, and define $\tilde{X}_n = (1/n) \sum_{i=1}^n X_i$. Then, for every $\epsilon > 0$,

$$P(\lim_{n\to\infty}|\bar{X}_n-\mu|<\epsilon)=1;$$

that is, \bar{X}_n converges almost surely to μ .

Definition 5.5.10 A sequence of random variables, X_1, X_2, \ldots , converges in distribution to a random variable X if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$$

at all points x where $F_X(x)$ is continuous.

Theorem 5.5.15 (Stronger form of the Central Limit Theorem) Let X_1, X_2, \ldots be a sequence of iid random variables with $EX_i = \mu$ and $0 < Var X_i = \sigma^2 < \infty$. Define $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$. Let $G_n(x)$ denote the cdf of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$. Then, for any $x, -\infty < x < \infty$,

$$\lim_{n\to\infty}G_n(x)=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-y^2/2}\,dy;$$

that is, $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ has a limiting standard normal distribution.

Theorem 5.5.17 (Slutsky's Theorem) If $X_n \to X$ in distribution and $Y_n \to a$, a constant, in probability, then

a. $Y_n X_n \rightarrow aX$ in distribution.

b. $X_n + Y_n \rightarrow X + a$ in distribution.

Theorem 5.5.24 (Delta Method) Let Y_n be a sequence of random variables that satisfies $\sqrt{n}(Y_n - \theta) \to n(0, \sigma^2)$ in distribution. For a given function g and a specific value of θ , suppose that $g'(\theta)$ exists and is not 0. Then

(5.5.10)
$$\sqrt{n}[g(Y_n) - g(\theta)] \to n(0, \sigma^2[g'(\theta)]^2) \text{ in distribution.}$$

Definition 6.2.1 A statistic $T(\mathbf{X})$ is a *sufficient statistic for* θ if the conditional distribution of the sample \mathbf{X} given the value of $T(\mathbf{X})$ does not depend on θ .

Theorem 6.2.2 If $p(\mathbf{x}|\theta)$ is the joint pdf or pmf of \mathbf{X} and $q(t|\theta)$ is the pdf or pmf of $T(\mathbf{X})$, then $T(\mathbf{X})$ is a sufficient statistic for θ if, for every \mathbf{x} in the sample space, the ratio $p(\mathbf{x}|\theta)/q(T(\mathbf{x})|\theta)$ is constant as a function of θ .

Theorem 6.2.6 (Factorization Theorem) Let $f(\mathbf{x}|\theta)$ denote the joint pdf or pmf of a sample \mathbf{X} . A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if and only if there exist functions $g(t|\theta)$ and $h(\mathbf{x})$ such that, for all sample points \mathbf{x} and all parameter points θ ,

(6.2.3)
$$f(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x}).$$

Theorem 6.2.10 Let X_1, \ldots, X_n be iid observations from a pdf or pmf $f(x|\theta)$ that belongs to an exponential family given by

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^k w_i(\boldsymbol{\theta})t_i(x)\right),$$

where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d), d \leq k$. Then

$$T(\mathbf{X}) = \left(\sum_{j=1}^{n} t_1(X_j), \dots, \sum_{j=1}^{n} t_k(X_j)\right)$$

is a sufficient statistic for θ .

Definition 6.2.11 A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{x})$ is a function of $T'(\mathbf{x})$.

Theorem 6.2.13 Let $f(\mathbf{x}|\theta)$ be the pmf or pdf of a sample \mathbf{X} . Suppose there exists a function $T(\mathbf{x})$ such that, for every two sample points \mathbf{x} and \mathbf{y} , the ratio $f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Then $T(\mathbf{X})$ is a minimal sufficient statistic for θ .

Definition 6.2.21 Let $f(t|\theta)$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. The family of probability distributions is called *complete* if $E_{\theta}g(T) = 0$ for all θ implies $P_{\theta}(g(T) = 0) = 1$ for all θ . Equivalently, $T(\mathbf{X})$ is called a *complete statistic*.

Theorem 6.2.28 If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

Definition 7.2.4 For each sample point \mathbf{x} , let $\hat{\theta}(\mathbf{x})$ be a parameter value at which $L(\theta|\mathbf{x})$ attains its maximum as a function of θ , with \mathbf{x} held fixed. A maximum likelihood estimator (MLE) of the parameter θ based on a sample \mathbf{X} is $\hat{\theta}(\mathbf{X})$.

Theorem 7.2.10 (Invariance property of MLEs) If $\hat{\theta}$ is the MLE of θ , then for any function $\tau(\theta)$, the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Definition 7.3.7 An estimator W^* is a best unbiased estimator of $\tau(\theta)$ if it satisfies $E_{\theta}W^* = \tau(\theta)$ for all θ and, for any other estimator W with $E_{\theta}W = \tau(\theta)$, we have $\operatorname{Var}_{\theta}W^* \leq \operatorname{Var}_{\theta}W$ for all θ . W^* is also called a uniform minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$.

Theorem 7.3.9 (Cramér-Rao Inequality) Let X_1, \ldots, X_n be a sample with pdf $f(\mathbf{x}|\theta)$, and let $W(\mathbf{X}) = W(X_1, \ldots, X_n)$ be any estimator satisfying

$$\frac{d}{d\theta} E_{\theta} W(\mathbf{X}) = \int_{\mathbf{X}} \frac{\partial}{\partial \theta} \left[W(\mathbf{x}) f(\mathbf{x}|\theta) \right] d\mathbf{x}$$

(7.3.4) and

$$\operatorname{Var}_{\theta}W(\mathbf{X}) < \infty.$$

Then

(7.3.5)
$$\operatorname{Var}_{\theta} (W(\mathbf{X})) \geq \frac{\left(\frac{d}{d\theta} \operatorname{E}_{\theta} W(\mathbf{X})\right)^{2}}{\operatorname{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)\right)^{2}\right)}.$$

Corollary 7.3.15 (Attainment) Let X_1, \ldots, X_n be iid $f(x|\theta)$, where $f(x|\theta)$ satisfies the conditions of the Cramér-Rao Theorem. Let $L(\theta|\mathbf{x}) = \prod_{i=1}^n f(x_i|\theta)$ denote the likelihood function. If $W(\mathbf{X}) = W(X_1, \ldots, X_n)$ is any unbiased estimator of $\tau(\theta)$, then $W(\mathbf{X})$ attains the Cramér-Rao Lower Bound if and only if

(7.3.12)
$$a(\theta)[W(\mathbf{x}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \log L(\theta|\mathbf{x})$$

for some function $a(\theta)$.

Theorem 7.3.17 (Rao–Blackwell) Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic for θ . Define $\phi(T) = \mathrm{E}(W|T)$. Then $\mathrm{E}_{\theta}\phi(T) = \tau(\theta)$ and $\mathrm{Var}_{\theta} \phi(T) \leq \mathrm{Var}_{\theta} W$ for all θ ; that is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

Theorem 7.3.23 Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value.

Definition 8.2.1 The likelihood ratio test statistic for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ is

$$\lambda(\mathbf{x}) = \frac{\sup_{\Theta_0} L(\theta|\mathbf{x})}{\sup_{\Theta} L(\theta|\mathbf{x})}.$$

A likelihood ratio test (LRT) is any test that has a rejection region of the form $\{\mathbf{x} : \lambda(\mathbf{x}) \leq c\}$, where c is any number satisfying $0 \leq c \leq 1$.

Theorem 8.2.4 If $T(\mathbf{X})$ is a sufficient statistic for θ and $\lambda^*(t)$ and $\lambda(\mathbf{x})$ are the LRT statistics based on T and \mathbf{X} , respectively, then $\lambda^*(T(\mathbf{x})) = \lambda(\mathbf{x})$ for every \mathbf{x} in the sample space.

Definition 8.3.1 The power function of a hypothesis test with rejection region R is the function of θ defined by $\beta(\theta) = P_{\theta}(\mathbf{X} \in R)$.

Definition 8.3.5 For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a *size* α *test* if $\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha$.

Definition 8.3.6 For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a level α test if $\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$.

Definition 8.3.9 A test with power function $\beta(\theta)$ is *unbiased* if $\beta(\theta') \geq \beta(\theta'')$ for every $\theta' \in \Theta_0^c$ and $\theta'' \in \Theta_0$.

Definition 8.3.11 Let C be a class of tests for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$. A test in class C, with power function $\beta(\theta)$, is a *uniformly most powerful* (UMP) class C test if $\beta(\theta) \geq \beta'(\theta)$ for every $\theta \in \Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class C.

Definition 8.3.16 A family of pdfs or pmfs $\{g(t|\theta): \theta \in \Theta\}$ for a univariate random variable T with real-valued parameter θ has a monotone likelihood ratio (MLR) if, for every $\theta_2 > \theta_1$, $g(t|\theta_2)/g(t|\theta_1)$ is a monotone (nonincreasing or nondecreasing) function of t on $\{t: g(t|\theta_1) > 0 \text{ or } g(t|\theta_2) > 0\}$. Note that c/0 is defined as ∞ if 0 < c.

Theorem 8.3.17 (Karlin–Rubin) Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Suppose that T is a sufficient statistic for θ and the family of pdfs or pmfs $\{g(t|\theta): \theta \in \Theta\}$ of T has an MLR. Then for any t_0 , the test that rejects H_0 if and only if $T > t_0$ is a UMP level α test, where $\alpha = P_{\theta_0}(T > t_0)$.

Definition 8.3.26 A *p-value* $p(\mathbf{X})$ is a test statistic satisfying $0 \le p(\mathbf{x}) \le 1$ for every sample point \mathbf{x} . Small values of $p(\mathbf{X})$ give evidence that H_1 is true. A *p-value* is *valid* if, for every $\theta \in \Theta_0$ and every $0 \le \alpha \le 1$,

(8.3.8)
$$P_{\theta}(p(\mathbf{X}) \leq \alpha) \leq \alpha.$$

Theorem 8.3.27 Let $W(\mathbf{X})$ be a test statistic such that large values of W give evidence that H_1 is true. For each sample point \mathbf{x} , define

$$p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P_{\theta} \left(W(\mathbf{X}) \ge W(\mathbf{x}) \right).$$

Then, p(X) is a valid p-value.

Definition 9.1.1 An interval estimate of a real-valued parameter θ is any pair of functions, $L(x_1, \ldots, x_n)$ and $U(x_1, \ldots, x_n)$, of a sample that satisfy $L(\mathbf{x}) \leq U(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$. If $\mathbf{X} = \mathbf{x}$ is observed, the inference $L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})$ is made. The random interval $[L(\mathbf{X}), U(\mathbf{X})]$ is called an interval estimator.

Definition 9.1.4 For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ , the coverage probability of $[L(\mathbf{X}), U(\mathbf{X})]$ is the probability that the random interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the true parameter, θ . In symbols, it is denoted by either $P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$ or $P(\theta \in [L(\mathbf{X}), U(\mathbf{X})]|\theta)$.

Definition 9.1.5 For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ , the confidence coefficient of $[L(\mathbf{X}), U(\mathbf{X})]$ is the infimum of the coverage probabilities, $\inf_{\theta} P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$.

Theorem 9.2.2 For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$. For each $\mathbf{x} \in \mathcal{X}$, define a set $C(\mathbf{x})$ in the parameter space by

(9.2.1)
$$C(\mathbf{x}) = \{\theta_0 \colon \mathbf{x} \in A(\theta_0)\}.$$

Then the random set $C(\mathbf{X})$ is a $1-\alpha$ confidence set. Conversely, let $C(\mathbf{X})$ be a $1-\alpha$ confidence set. For any $\theta_0 \in \Theta$, define

$$A(\theta_0) = \{\mathbf{x} \colon \theta_0 \in C(\mathbf{x})\}.$$

Then $A(\theta_0)$ is the acceptance region of a level α test of H_0 : $\theta = \theta_0$.

Definition 9.2.6 A random variable $Q(\mathbf{X}, \theta) = Q(X_1, \dots, X_n, \theta)$ is a pivotal quantity (or pivot) if the distribution of $Q(\mathbf{X}, \theta)$ is independent of all parameters. That is, if $\mathbf{X} \sim F(\mathbf{x}|\theta)$, then $Q(\mathbf{X}, \theta)$ has the same distribution for all values of θ .

Theorem 9.3.2 Let f(x) be a unimodal pdf. If the interval [a, b] satisfies

- i. $\int_{a}^{b} f(x) dx = 1 \alpha$,
- ii. f(a) = f(b) > 0, and

iii. $a \le x^* \le b$, where x^* is a mode of f(x),

then [a, b] is the shortest among all intervals that satisfy (i).

Corollary 9.3.10 If the posterior density $\pi(\theta|\mathbf{x})$ is unimodal, then for a given value of α , the shortest credible interval for θ is given by

$$\{ heta: \pi(heta|\mathbf{x}) \geq k\} \quad ext{where} \quad \int_{\{ heta: \pi(heta|\mathbf{x}) \geq k\}} \pi(heta|\mathbf{x}) d heta = 1-lpha.$$

Definition 10.1.1 A sequence of estimators $W_n = W_n(X_1, \ldots, X_n)$ is a consistent sequence of estimators of the parameter θ if, for every $\epsilon > 0$ and every $\theta \in \Theta$,

(10.1.1)
$$\lim_{n\to\infty} P_{\theta}(|W_n - \theta| < \epsilon) = 1.$$

Theorem 10.1.3 If W_n is a sequence of estimators of a parameter θ satisfying

- i. $\lim_{n\to\infty} \operatorname{Var}_{\theta} W_n = 0$,
- ii. $\lim_{n\to\infty} \operatorname{Bias}_{\theta} W_n = 0$,

for every $\theta \in \Theta$, then W_n is a consistent sequence of estimators of θ .

Theorem 10.1.6 (Consistency of MLEs) Let X_1, X_2, \ldots , be iid $f(x|\theta)$, and let $L(\theta|\mathbf{x}) = \prod_{i=1}^n f(x_i|\theta)$ be the likelihood function. Let $\hat{\theta}$ denote the MLE of θ . Let $\tau(\theta)$ be a continuous function of θ . Under the regularity conditions in Miscellanea 10.6.2 on $f(x|\theta)$ and, hence, $L(\theta|\mathbf{x})$, for every $\epsilon > 0$ and every $\theta \in \Theta$,

$$\lim_{n\to\infty} P_{\theta}(|\tau(\hat{\theta}) - \tau(\theta)| \ge \epsilon) = 0.$$

That is, $\tau(\hat{\theta})$ is a consistent estimator of $\tau(\theta)$.

Definition 10.1.7 For an estimator T_n , if $\lim_{n\to\infty} k_n \operatorname{Var} T_n = \tau^2 < \infty$, where $\{k_n\}$ is a sequence of constants, then τ^2 is called the *limiting variance* or *limit of the variances*.

Definition 10.1.9 For an estimator T_n , suppose that $k_n(T_n - \tau(\theta)) \to \mathbf{n}(0, \sigma^2)$ in distribution. The parameter σ^2 is called the *asymptotic variance* or *variance of the limit distribution* of T_n .

Definition 10.1.11 A sequence of estimators W_n is asymptotically efficient for a parameter $\tau(\theta)$ if $\sqrt{n}[W_n - \tau(\theta)] \to n[0, v(\theta)]$ in distribution and

$$v(\theta) = \frac{[\tau'(\theta)]^2}{\mathbf{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2 \right)};$$

that is, the asymptotic variance of W_n achieves the Cramér-Rao Lower Bound.

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X_1, X_2, \ldots , be iid $f(x|\theta)$, let $\hat{\theta}$ denote the MLE of θ , and let $\tau(\theta)$ be a continuous function of θ . Under the regularity conditions in Miscellanea 10.6.2 on $f(x|\theta)$ and, hence, $L(\theta|\mathbf{x})$,

$$\sqrt{n}[\tau(\hat{\theta}) - \tau(\theta)] \to n[0, v(\theta)],$$

where $v(\theta)$ is the Cramér-Rao Lower Bound. That is, $\tau(\hat{\theta})$ is a consistent and asymptotically efficient estimator of $\tau(\theta)$.

Definition 10.1.16 If two estimators W_n and V_n satisfy

$$\sqrt{n}[W_n - \tau(\theta)] \to \mathbf{n}[0, \sigma_W^2]$$
$$\sqrt{n}[V_n - \tau(\theta)] \to \mathbf{n}[0, \sigma_V^2]$$

in distribution, the asymptotic relative efficiency (ARE) of V_n with respect to W_n is

$$ARE(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}.$$

Theorem 10.3.1 (Asymptotic distribution of the LRT—simple H_0) For testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, suppose X_1, \ldots, X_n are iid $f(x|\theta)$, $\hat{\theta}$ is the MLE of θ , and $f(x|\theta)$ satisfies the regularity conditions in Miscellanea 10.6.2. Then under H_0 , as $n \to \infty$,

$$-2\log\lambda(\mathbf{X}) \to \chi_1^2$$
 in distribution,

where χ_1^2 is a χ^2 random variable with 1 degree of freedom.

Theorem 10.3.3 Let X_1, \ldots, X_n be a random sample from a pdf or pmf $f(x|\theta)$. Under the regularity conditions in Miscellanea 10.6.2, if $\theta \in \Theta_0$, then the distribution of the statistic $-2\log \lambda(\mathbf{X})$ converges to a chi squared distribution as the sample size $n \to \infty$. The degrees of freedom of the limiting distribution is the difference between the number of free parameters specified by $\theta \in \Theta_0$ and the number of free parameters specified by $\theta \in \Theta$.