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Formulaes from Casella & Berger

" Theorem 5.2.11 Suppose X,,..., X, is a random sample from a pdf or pmf f(x|6),
where

£(z16) = h(z)c(6) exp (Z w (e):;-(x))

i=1

is a member of an exponential family. Define statistics Ty, ..., Ty by
n
T(X1,.., Xn) = 3 _8(X;), i=1,...,k
i=1

If the set {(w(0),w=2(6),...,wk(0)),0 € ©} contains an open subset of R*, then the
distribution of (T1,...,Tx) is an exponential family of the form

k
(5:26)  fr(un,. ., unl6) = Hus, .., w)[c(6)]" exp (z wite)u.-) .
i=1
Definition 5.5.1 A sequence of random variables, X, Xs,..., converges in proba-
bility to a random variable X if, for every € > 0,

lim P(|Xn—X|>€)=0 or,equivalently, lim P(Xn— X|<¢)=1
n—00 noes

Definition 5.5.6 A sequence of random variables, X1, Xs,..., converges almost
surely to a random variable X if, for every € > 0,

P(lim | X, - X| <€) =1
L=+ D0
Theorem 5.5.9 (Strong Law of Large Numbers) Let Xy, Xa,. .. be iid random
variables with EX; = p and Var X; = 0? < 00, and define X, = (1/n) 3, X;.
Then, for every e > 0,
P( lim | X, — u| <€) =1;
n—00
that is, X, converges almost surely to u.

Definition 5.5.10 A sequence of random variables, X, X5, ..., converges in distri-
bution to a random variable X if

Jlim_Fx,(z) = Fx(z)

at all points z where Fx(z) is continuous.

Theorem 5.5.15 (Stronger form of the Central Limit Theorem) Let
X1,Xa,... be a sequence of iid random variables with EX; = p and 0 < Var X; =
0? < oo. Define Xn, = (1/n) Sy Xi. Let Go(x) denote the cdf of /n(Xn — p)/o.
Then, for any x, —00o < x < 00,

lim Gn(z):/ —1\/2=~‘3_"’2"2 dy;
n—oc oo T

that is, /n(Xn — w)/o has a limiting standard normal distribution.

Theorem 5.5.17 (Slutsky’s Theorem) If X,, — X in distribution and Y,, — a, a
constant, in probability, then
a. Y, X, — aX in distribution.

b. X, +Y, = X + a in distribution.

Theorem 5.5.24 (Delta Method) Let Y, be a sequence of random variables that
satisfies /n(Y, — 0) — n(0, 0?) in distribution. For a given function g and a specific
value of 0, suppose that g'(8) erists and is not 0. Then

(5.5.10) Vlg(Yn) = 9(8)] — n(0,0%[¢'(6)]?) in distribution.
Definition 8.2.1 A statistic T(X) is a sufficient statistic for 8 if the conditional
distribution of the sample X given the value of T'(X) does not depend on 6.

Theorem 6.2.2  If p(x|6) is the joint pdf or pmf of X and q(t|f) is the pdf or pmf
of T(X), then T(X) is a sufficient statistic for 8 if, for every x in the sample space,
the ratio p(x|8)/q(T(x)|6) is constant as a function of 6.

Theorem 6.2.6 (Factorization Theorem) Let f(x|6) denote the joint pdf or
pmf of a sample X. A statistic T(X) is o sufficient statistic for 8 if and only if there
exist functions g(t|6) and h(x) such that, for all sample points x and all parameter
points 8,

(6.2.3) f(x|6) = 9(T(x)|6)h(x).

Theorem 6.2.10 Let X1,..., X, be iid observations from a pdf or pmf f(z|@) that
belongs to an ezponential family given by

(a16) = h(@)c(@ exp (2 wece):f(z)) :

where 8 = (0,,02,...,04), d < k. Then

T(X) = (Ztl(xj),...,Ztk(X_,-))

1=1 i=1
is a sufficient statistic for 6.

Definition 6.2.11 A sufficient statistic T(X) is called a minimal sufficient statistic
if, for any other sufficient statistic 7"(X), T'(x) is a function of T"(x).



Theorem 6.2.18 Let f(x|0) be the pmf or pdf of a sample X. Suppose there ezists a
function T(x) such that, for every two sample points x andy, the ratio f(x|6)/f(y|6)
is constant as a function of 8 if and only if T(x) = T(y). Then T(X) is a minimal
sufficient statistic for 6.

Definition 6.2.21 Let f(t|@) be a family of pdfs or pmfs for a statistic 7'(X). The
family of probability distributions is called complete if Egg(T) = 0 for all § implies
Py(g(T) = 0) = 1 for all 8. Equivalently, T(X) is called a complete statistic.

Theorem 6.2.28 If a minimal sufficient statistic exists, then any complete statistic
is also a minimal sufficient statistic.

Definition 7.2.4 For each sample point x, let f(x) be a parameter value at which
L(8|x) attains its maximum as a function of 8, with x held fixed. A mazimum likelihood
estimator (MLE) of the parameter 6 based on a sample X is §(X).

Theorem 7.2.10 (Invariance property of MLEs) If 6 is the MLE of 6, then
for any function 7(6), the MLE of 7(8) is 1(0).

Definition 7.3.7 An estimator W* is a best unbiased estimator of 7(8) if it satisfies
EgW* = 7(6) for all § and, for any other estimator W with EgW = 7(8), we have
Varg W* < Varg W for all §. W* is also called a uniform minimum variance unbiased
estimator (UMVUE) of 7(6).

Theorem 7.3.9 (Cramér-Rao Inequality) Let X,,...,X, be a sample with pdf
f(x|6), and let W(X) = W(X1,...,Xn) be any estimator satisfying

ZEW ) = [ 2 W60 sxl)] dx
(7.3.4) and
VargW (X) < 0.
Then
2
(73.5) Varg (W(X)) > (&EoW (X)) .
B (4108 /(X10))°)

Corollary 7.3.15 (Attainment) Let X,,..., X, be iid f(z|8), where f(z|f) sat-
isfies the conditions of the Cramér-Rao Theorem. Let L(0|x) = []', f(z:|6) denote
the likelihood function. If W(X) = W(X,,...,X,) is any unbiased estimator of T(0),
then W (X) attains the Cramér-Rao Lower Bound if and only if

(73.12) a(O)[W (x) - 7(6)] = % log L(6]x)

for some function a(8).

Theorem 7.3.17 (Rao—Blackwell) Let W be any unbiased estimator of 7(6), and
let T be a sufficient statistic for 8. Define ¢(T) = E(W|T). Then Egd(T) = 7(8) and
Varg ¢(T') < Varg W for all 0; that is, ¢(T) is a uniformly better unbiased estimator
of T(8). '

Theorem 7.3.28  Let T be a complete sufficient statistic for a parameter 8, and
let ¢(T) be any estimator based only on T. Then ¢(T) s the unique best unbiased
estimator of its expected value.

Definition 8.2.1  The likelihood ratio test statistic for testing Hy: 6 € Oy versus
H,:0€0fis

sup L(6x)
(=0

AGe) = sup L(f|x)"
e

A likelihood ratio test (LRT) is any test that has a rejection region of the form {x: A(x)
< ¢}, where ¢ is any number satisfying 0 < ¢ < 1.

Theorem 8.2.4 IfT(X) is a sufficient statistic for 6 and A*(t) and A(x) are the
LRT statistics based on T and X, respectively, then X*(T(x)) = A(x) for every x in
the sample space.

Definition 8.3.1 The power function of a hypothesis test with rejection region R

is the function of 8 defined by 8(6) = Ps(X € R).

Definition 8.3.5 For 0 < a < 1, a test with power function 3(#) is a size « test
if supgeq, 8(6) = a.

Definition 8.3.6 For 0 < a <1, a test with power function 3(8) is a level a test
if Supaeeo 6(9) < ao.

Definition 8.3.9 A test with power function () is unbiased if 5(68') > 3(6"”) for
every ' € ©f and 0" € 6o.

Definition 8.3.11 Let C be a class of tests for testing Hy: § € ©p versus H,: 0
©5. A test in class C, with power function 3(#), is a uniformly most powerful (UMP)
class C test if §(8) > 3'(6) for every 8 € ©§ and every 3'(6) that is a power function
of a test in class C.

Definition 8.3.16 A family of pdfs or pmfs {g(|8): § € ©} for a univariate random
variable T' with real-valued parameter § has a monotone likelihood ratio (MLR) if,
for every 82 > 6., g(t|62)/g(t|f1) is a monotone (nonincreasing or nondecreasing)
function of t on {¢t: g(t|6,) > 0 or g(t|62) > 0}. Note that ¢/0 is defined as 00 if 0 < ¢.

Theorem 8.3.17 (Karlin—-Rubin)  Consider testing Hy : 6 < 8 versus H; :
0 > 8. Suppose that T is a sufficient statistic for 6 and the family of pdfs or pmfs
{g(t|8): 8 € ©} of T has an MLR. Then for any to, the test that rejects Hy if and
only if T > ty is a UMP level o test, where a = Fp, (T > tp).



Definition 8.3.26 A p-value p(X) is a test statistic satisfying 0 < p(x) < 1 for
every sample point x. Small values of p(X) give evidence that H; is true. A p-value
is valid if, for every # € Gp and every 0 < a < 1,

(8.3.8) Py (p(X) < @) < a.

Theorem 8.3.27 Let W(X) be a test statistic such that large values of W give
evidence that H, is true. For each sample point x, define

(8.3.9) p(x) = sup Py (W(X) > W(x)).
IS

Then, p(X) is a valid p-value.

Definition 9.1.1 An interval estimate of a real-valued parameter § is any pair of
functions, L(zy,...,z,) and U(z,,...,Txs), of a sample that satisfy L(x) < U(x) for
all x € X. If X = x is observed, the inference L(x) < 8 < U(x) is made. The random
interval [L(X),U(X)] is called an interval estimator.

(=

Definition 9.1.4 For an interval estimator [L(X), U(X)] of a parameter 6, the cover-
age probability of [L(X),U(X)] is the probability that the random interval
[L(X),U(X]] covers the true parameter, . In symbols, it is denoted by either Py(6 €
[L(X), U(X)]) or P(8 € [L(X),U(X)]|6).

Definition 9.1.5 For an interval estimator [L(X),U(X)] of a parameter §, the
confidence coefficient of [L(X),U(X)] is the infimum of the coverage probabilities,

Theorem 9.2.2 For each 6y € O, let A(6p) be the acceptance region of a level
test of Hy: 8 = 8. For each x € X, define a set C(x) jin the parameter space by

9.2.1) C(x) = {80: x € A(6o)}.

Then the random set C(X) is a 1 — a confidence set. Conversely, let C(X) bea1—q
confidence set. For any 6y € O, define

A(Bp) = {x: 8y € C(x)}.
Then A(6p) is the acceptance region of a level o test of Hy: 6 = 6.

Definition 9.2.6 A random variable Q(X, ) = Q(X;,...,X,,#) is a pivotal quan-
tity (or pivot) if the distribution of Q(X, #) is independent of all parameters. That is,
if X ~ F(x|8), then Q(X,#) has the same distribution for all values of 6.

Theorem 9.3.2 Let f(z) be a unimodal pdf. If the interval [a,b] satisfies
i [0 f(z)de=1-a,
ii. f(a)= f(b) >0, and

iii. @ <z* < b, where z* is a mode of f(z),

then [a,b] is the shortest among all intervals that satisfy (i).

Corollary 9.3.10 If the posterior density m(8|x) is unimodal, then for a given value :
of a, the shortest credible interval for 6 is given by

{6 :w(0]x) > k} where m(6]x)d8 =1 — a.
{6:m(01x) >k}

Definition 10.1.1 A sequence of estimators W,, = W,(Xa,...,X,) is a consistent
sequence of estimators of the parameter 8 if, for every € > 0 and every 6 € ©,

(10.1.1) lim, oo Po(|[Wn — 0] <€) = 1.

Theorem 10.1.3 If W, is a sequence of estimators of a parameter @ satisfying
i, lim, o Varg W, =0,

ii. lim,_,~BiasgW, =0,

for every 68 € ©, then W, is a consistent sequence of estimators of 6.

Theorem 10.1.6 (Consistency of MLEs) Let Xy, Xo,..., be tid f(x|6), and let
L(61x) = [T, f(z:|0) be the likelihood function. Let 6 denote the MLE of 8. Let 7(0)
be a continuous function of 8. Under the regularity conditions in Miscellanea 10.6.2
on f(z|0) and, hence, L(0|x), for every e > 0 and every 6 € O,

limyp oo Po(|7(0) — 7(8)] > €) = 0.

That is, T(0) is a consistent estimator of T(8).

Definition 10.1.7 For an estimator T}, if lim, o kn VarT, = 72 < oo, where
{kn} is a sequence of constants, then 72 is called the limiting variance or limit of the
variances.

Definition 10.1.9 TFor an estimator T, suppose that k,(T,, — 7(8)) — n(0,¢?) in
distribution. The parameter o2 is called the asymptotic variance or variance of the
limit distribution of T,,.

Definition 10.1.11 A sequence of estimators W, is asymptotically efficient for a
parameter 7(0) if \/n|W, — 7(8)] — n[0,v(#)] in distribution and
7 2
0= — O
Ey ((mlogf(XV?)) )

that is, the asymptotic variance of W,, achieves the Cramér-Rao Lower Bound.

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X;,X,,..., be iid
f(z]8), let 6 denote the MLE of 6, and let 7(0) be a continuous function of 8. Under
the regularity conditions in Miscellanea 10.6.2 on f(z|0) and, hence, L(6|x),

valr(6) = 7(6)] — nl0,v(8)],

where v(6) is the Cramér-Rao Lower Bound. That is, 7(6) is a consistent and asymp-
totically efficient estimator of T(8).



Definition 10.1.16 If two estimators W,, and V|, satisfy
VW, —7(8)] — n[0, 0]
ValVa = 7(8)] = n[0, 0]
in distribution, the asymptotic relative efficiency (ARE) of V,, with respect to W, is

oy
ARE(V,, W) = Z&.
oy

Theorem 10.3.1 (Asymptotic distribution of the LRT—simple Hy) For test-
ing Hp : 6 = 6 versus H, : 0 # 6, suppose X,..., X, are iid f(z|6), 0 is the MLE
of 8, and f(x|8) satisfies the regularity conditions in Miscellanea 10.6.2. Then under
Hg, asn — o0,

~2log \(X) — x? in distribution,
where x? is a x? random variable with 1 degree of freedom.

Theorem 10.3.3 Let X;,..., X, be a random semple from a pdf or pmf f(z|6).
Under the regularity conditions in Miscellanea 10.6.2, if @ € g, then the distribution
of the statistic —2log A\(X) converges to a chi squared distribution as the sample size
n — 0o. The degrees of freedom of the limiting distribution is the difference between
the number of free parameters specified by 0 € ©p and the number of free parameters
specified by 8 € O.



