Problem 1

Let the probability density function (pdf) of a random variable X be given by:

$$f(x|\theta) = \begin{cases} \theta x^{\theta-1}, \ 0 < x < 1\\ 0, \ \text{elsewhere} \end{cases}$$

where $\theta \in (0, \infty)$.

- a) Show that $E[X^k] = \frac{\theta}{\theta + k}$, k > 0, and use that to find the expected value and the variance of X.
- b) Show that $f(x|\theta)$ is a member of an exponential class of distributions. Show also that the distribution of $Y = -\log X$ is gamma distributed with parameters $\alpha = 1$ and $\beta = \frac{1}{\alpha}$.
- c) Find the score statistic for a single random variable X with a pdf given by $f(x|\theta)$ and show that the Fisher information number is given by $\frac{1}{\rho^2}$.
- d) Let $X_1, X_2, ..., X_n$ be independent random variables all with the same distribution as X. Suggest a sufficient statistic for θ that is different from the random sample. Show that the maximum likelihood estimator for θ is given by $\hat{\theta} = \frac{-n}{\sum_{i=1}^{n} \log X_i}$.
- e) Find the distribution of $Z = -\sum_{i=1}^{n} \log X_i$. Show that $E[Z^k] = \frac{\Gamma(n+k)}{\theta^k \Gamma(n)}, k > -n$, where

 $\Gamma(.)$ is the gamma function and use that to find the expected value and variance of $\hat{\theta}$.

f) Find the Cramer-Rao lower bound for $Var(\hat{\theta})$. What is meant by an efficient estimator for θ ?

- g) What is the asymptotic distribution of $\hat{\theta}$? Use the asymptotic distribution to show that the interval $\left[\hat{\theta}\left(1-\frac{z_{\frac{\alpha}{2}}}{\sqrt{n}}\right), \hat{\theta}\left(1+\frac{z_{\frac{\alpha}{2}}}{\sqrt{n}}\right)\right]$ is an approximate $(1-\alpha)100\%$ confidence interval for θ .
- h) Show that $2\theta Z$ (Z is defined in 1e) is chi squared distributed with 2n degrees of freedom and use that to construct an exact $(1-\alpha)100\%$ confidence interval for θ . Compare the length of the intervals when n=10 and $\alpha = 0.05$. You can split α equally putting $\frac{\alpha}{2}$ in each tail of the distribution.
- i) Consider now testing $H_0: \theta = 1$ versus $H_1: \theta \neq 1$. Show that a likelihood ratio test leads to reject H_0 if $\left(-\sum_{i=1}^n \log X_i\right)^n e^{\sum_{i=1}^n \log X_i} \le c$ where *c* is some constant and use that to show how an exact test for the hypothesis can be constructed based on Z (defined in 1 e).

Problem 2

a) Assume $X_1, X_2, ..., X_n$ is a random sample from a $N(\theta, \sigma^2)$ distribution where $\sigma^2 > 0$ is known. Show that the likelihood function, $L(\theta | \mathbf{x})$, can be written as:

$$L(\theta | \mathbf{x}) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} e^{\frac{-1}{2\sigma^2}\sum_{i=1}^n (x_i - \bar{x})^2} \cdot e^{\frac{-1}{2\sigma^2}n(\bar{x} - \theta)^2}$$

Consider now the hypotheses $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ where θ_0 is specified. Let $\lambda(\mathbf{x})$ be the likelihood ratio for the test. Show that $-2\log\lambda(\mathbf{X})$ is exact chi squared distributed with one degree of freedom under H_0 .