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Problem 1 

 

Let the probability density function (pdf) of a random variable X be given by: 
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where  0,   . 
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, 0,k   and use that to find the expected value and the 

variance of X.  

 

b) Show that  f x   is a member of an exponential class of distributions. Show also that 

the distribution of logY X   is gamma distributed with parameters 1  and 
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c) Find the score statistic for a single random variable X with a pdf given by  f x   and 

show that the Fisher information number is given by 
2

1


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d) Let 1 2, , , nX X X  be independent random variables all with the same distribution as X. 

Suggest a sufficient statistic for  that is different from the random sample. Show that the 

maximum likelihood estimator for   is given by 
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 where 

 .  is the gamma function and use that to find the expected value and variance of  . 

 

f) Find the Cramer-Rao lower bound for  ˆVar  . What is meant by an efficient estimator 

for  ? 
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g) What is the asymptotic distribution of  ? Use the asymptotic distribution to show that 

the interval 2 2ˆ ˆ1 ,  1
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 is an approximate  1 100% confidence interval 

for  . 

 

h) Show that 2 Z  (Z is defined in 1e) is chi squared distributed with 2n degrees of freedom 

and use that to construct an exact  1 100% confidence interval for . Compare the 

length of the intervals when n=10 and 0.05  . You can split   equally putting 
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each tail of the distribution.  

 

i) Consider now testing 0 1: 1 versus : 1H H   . Show that a likelihood ratio test leads to 

reject 0H  if 1
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  where c  is some constant and use that to show 

how an exact test for the hypothesis can be constructed based on Z (defined in 1 e).  

 

 

Problem 2 

 

a) Assume 1 2, , , nX X X  is a random sample from a  2,N    distribution where 2 0  is 

known. Show that the likelihood function,  L  x ,  can be written as: 
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Consider now the hypotheses 0 0 1 0:  versus :H H      where 0  is specified. Let 

  x be the likelihood ratio for the test. Show that  2log X  is exact chi squared 

distributed with one degree of freedom under 0H . 

 

 

 

 


