Some repetition from week 42

Sufficient statistics

A statistic T(X) is a sufficient statistic for θ if the conditional distribution of the sample X given the value of T(X) does not depend on θ .

A sufficient statistics for a parameter (-vector) θ is a statistic that in a certain sense, captures all the information about θ in the sample.

Theorem 6.2.2

If $p(\mathbf{x}|\boldsymbol{\theta})$ is the pdf/pmf of X and $q(t|\boldsymbol{\theta})$ is the pdf/pmf of T(X), then T(X) is a sufficient statistics for $\boldsymbol{\theta}$ if, for every \mathbf{x} in the sample space the ratio $\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q(T(\mathbf{x})|\boldsymbol{\theta})}$ is a constant as a function of $\boldsymbol{\theta}$.

Theorem 6.2.6

Let $f(\mathbf{x}|\theta)$ be the joint pdf/pmf for a sample $\mathbf{X} \cdot T(\mathbf{X})$ is a sufficient statistics for θ if and only if for all \mathbf{x} and all θ .

$$f(\boldsymbol{x}|\boldsymbol{\theta}) = g(T(\boldsymbol{X}|\boldsymbol{\theta}))h(\boldsymbol{x})$$

Minimal sufficient.

Definition 6.2.11. A sufficient statistics T(X) is called a minimal sufficient statistics if for any other sufficient statistics T'(X), T(X) is a function of T(X).

Theorem 6.2.3

Let $f(\mathbf{x}|\theta)$ be the joint pdf/pmf for a sample \mathbf{X} . Suppose there exists a $T(\mathbf{X})$ such that for every \mathbf{x} and every \mathbf{y} , $f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is a constant as a function of $\theta \Leftrightarrow T(\mathbf{X})=T(\mathbf{Y})$. Then $T(\mathbf{X})$ is a minimal sufficient statistics for θ .

Definition 6.2.21

Let $f(t|\theta)$ be a family of pdfs/pmfs for a statistic T(X). The family is complete if

$$E_{\theta}[g(T)] = 0 \implies P_{\theta}(g(T) = 0) = 1$$
, for all θ .