
                                                Exercise 2 

 

Problem 1 

 

Let the probability density function (pdf) of a gamma distributed random variable X be given by: 
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where   is the gamma function. We write that  ,X   . 

a) What is the distribution of cX , where c is a constant? Explain why  E X c  and why 

the variance of X is given by 2 2.c   

 

b) Show that 
2

p
  and 

2
c


  gives a chi squared distribution with p degrees of freedom. 

Assume Y is chi squared distributed with p degrees of freedom. What is the distribution 

of bY where b is a constant? 

 

c) Let 1 2, , , nZ Z Z  be a random sample from a  2,N   and let  
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estimator for the variance.  Show that
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d) Show that for a gamma distributed random variable, X ,  we have for k    that
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.   Let S be the estimator for  . Show that 
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e) Suggest an unbiased estimate for   and find the variance of this estimator.    

 

 



 

Problem 2 from the book.  
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