Exercise 2

Problem 1

Let the probability density function (pdf) of a gamma distributed random variable *X* be given by:

$$f(x|\alpha,\beta) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}}, & x>0, \alpha>0, \beta>0, \\ 0, & \text{elsewhere} \end{cases}$$

where $\Gamma(\alpha)$ is the gamma function. We write that $X \sim \Gamma(\alpha, \beta)$.

- a) What is the distribution of cX, where c is a constant? Explain why $E[X] = c\alpha\beta$ and why the variance of X is given by $c^2\alpha\beta^2$.
- b) Show that $\alpha = \frac{p}{2}$ and $c = \frac{2}{\beta}$ gives a chi squared distribution with p degrees of freedom. Assume Y is chi squared distributed with p degrees of freedom. What is the distribution of bY where b is a constant?
- c) Let $Z_1, Z_2, ..., Z_n$ be a random sample from a $N(\mu, \sigma^2)$ and let $S^2 = \frac{1}{n-1} \sum_{i=1}^n (Z_i \overline{Z})^2$ be an estimator for the variance. Show that $S^2 \sim \Gamma\left(\frac{n-1}{2}, \frac{2\sigma^2}{n-1}\right)$. What is the variance of S^2 ?
- d) Show that for a gamma distributed random variable, X, we have for $k > -\alpha$ that $E[X^k] = \frac{\Gamma(\alpha + k)\beta^k}{\Gamma(\alpha)}$. Let S be the estimator for σ . Show that

$$E[S] = \frac{\Gamma\left(\frac{n}{2}\right)2^{\frac{1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)\cdot(n-1)^{\frac{1}{2}}}\sigma.$$

e) Suggest an unbiased estimate for σ and find the variance of this estimator.

Problem 2 from the book.

- 3.20
- 3.23
- 3.30a