Slides week 37

Overview of some natural occurring distributions

nt timeintervals are
$\Delta t = \lambda \Delta t + o(\Delta t)$
ne event in Δt) = $o(\Delta t)$
mes A occur in [0,t]
$\frac{(t)^x e^{-\lambda t}}{x!}$, $x = 0, 1, 2,$
occurs for the first time
x , x>0
x, x>0 herwise
occurs the r-th time
$x^{r-1}e^{-\lambda x}$, x>0 otherwise
(

Gamma distribution

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}}, x > 0, \alpha > 0, \beta > 0.$$

$$X \sim \Gamma(\alpha, \beta) \Rightarrow Y = cX \sim \Gamma(\alpha, c\beta)$$

$$E[X^n] = \frac{\Gamma(\alpha+n)\beta^n}{\Gamma(\alpha)}, n > -\alpha$$

$$\alpha = 1 \Rightarrow X \sim \exp\left(\frac{1}{\beta}\right)$$

$$\alpha = \frac{\nu}{2}, \ \beta = 2 \Rightarrow X \sim \chi^2(\nu)$$

$$X_i \sim \Gamma(\alpha_i, \beta), i = 1, 2, ..., n \Rightarrow \sum_{i=1}^n X_i \sim \Gamma\left(\sum_{i=1}^n \alpha_i, \beta\right)$$

Beta distribution

$$f(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \ 0 < x < 1, \ \alpha > 0, \ \beta > 0$$

$$E[X^n] = \frac{\Gamma(\alpha+n)\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+n)\Gamma(\alpha)}, n > -\alpha$$