Problem 1

Assume X_1, \ldots, X_n are iid Poisson distributed with parameter λ , i. e. the pmf for each of the variables is given by:

$$f(x|\lambda) = P(X = x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, x=0,1,2,...$$

where $\lambda \in (0,\infty)$.

- a) Show that $f(x|\lambda)$ is a member of an exponential family of distributions. Derive the maximum likelihood estimator for λ , $\hat{\lambda}$, based on X_1, \dots, X_n .
- b) Derive the score statistic based on X_1, \ldots, X_n . Is $\hat{\lambda}$ a uniform minimum variance unbiased estimator (UMVUE) for λ ? Explain your answer.
- c) It is of interest to estimate the probability $P(X = 0) = e^{-\lambda}$. What is the maximum likelihood estimator for the probability P(X = 0)? Find the moment generating function for $Y = \sum_{i=1}^{n} X_i$ and use it to find the expected value of the maximum likelihood estimator for P(X = 0). Is it unbiased?
- d) Suppose there exist an unbiased estimator $W(X_1,...,X_n)$ for $\tau(\lambda) = e^{-\lambda}$. Derive the Cramer-Rao lower bound of the variance of $W(X_1,...,X_n)$. Can $W(X_1,...,X_n)$ attain this lower bound?
- e) Suppose U and V are independent Poisson distributed with parameters λ_1 and λ_2 respectively. Let Z = U + V. Show that the conditional distribution of U given Z = z is binomial $\left(z, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$. What is the conditional distribution of X_1 given that $Y = \sum_{i=1}^n x_i$?

f) Let the estimator $\hat{\tau}(X_1, \dots, X_n)$ be defined by $\hat{\tau}(X_1, \dots, X_n) = \begin{cases} 1 & \text{if } X_1 = 0 \\ 0, & \text{otherwise} \end{cases}$ Show that $\hat{\tau}(X_1, \dots, X_n)$ is an unbiased estimator for $\tau(\lambda) = e^{-\lambda}$. Explain also why the estimator $E\left(\hat{\tau}(X_1, \dots, X_n) \middle| Y = \sum_{i=1}^n X_i\right)$ is a unique best unbiased estimator of $\tau(\lambda) = e^{-\lambda}$.

Page 2 of 2

g) Show that
$$E\left(\hat{\tau}(X_1, \dots, X_n) \middle| Y = \sum_{i=1}^n X_i\right) = \left(1 - \frac{1}{n}\right)^{\sum_{i=1}^{n} X_i}$$
 and find the variance of this estimator.

n

Compare the variance to its lower bound.

Problem 2

Another way to get information about λ is to register the time between events in a Poisson process. Let T_1, T_2, \dots, T_n be iid and represent n such times, each with a pdf given by

$$f_{T}(t|\lambda) = \begin{cases} \lambda e^{-\lambda t}, t > 0\\ 0, \text{ otherwise} \end{cases}$$

- a) Show that $U = \sum_{i=1}^{n} T_i$ is a sufficient statistic for λ and verify if it is minimal or not. What is the distribution of $U = \sum_{i=1}^{n} T_i$?
- b) Show that $\begin{bmatrix} \chi^2_{2n,1-\frac{\alpha}{2}} & \chi^2_{2n,\frac{\alpha}{2}} \\ \frac{2\sum_{i=1}^n T_i}{2\sum_{i=1}^n T_i} & \frac{2\sum_{i=1}^n T_i}{2\sum_{i=1}^n T_i} \end{bmatrix}$ is a $1-\alpha$ confidence interval for λ . What is the expected length

of this interval? (Hint. You can use that if V is gamma distributed with parameters α and β ,

then
$$E[V^k] = \frac{\Gamma(\alpha+k)\beta^k}{\Gamma(\alpha)}, \ k > -\alpha$$
.)

c) Explain why $\sqrt{n}\left(\overline{T_n} - \frac{1}{\lambda}\right) \xrightarrow{D} N\left(0, \frac{1}{\lambda^2}\right)$ where $\overline{T_n} = \frac{1}{n} \sum_{i=1}^n T_i$ and \xrightarrow{D} means convergence in

distribution. Use this to construct a $1-\alpha$ confidence interval for λ based on $\overline{T_n}$, using its asymptotic distribution. Compare the expected length of this interval to the one in b) when $\alpha = 0.05$ and n=20. What is the asymptotic distribution of $\overline{T_n}^{-1}$?