Exercise 9 TMA4295

Problem 1

7.2.a from the book

Problem 2

7.24 from the book

Problem 3

7.40 from the book

Problem 4

7.41 from the book

Problem 5

Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ be n independent observations from $N\left(\theta, \sigma^{2}\right)$, where σ^{2} is known.
a) Find Cramer-Rao's lower bound for the variance of unbiased estimators for θ. (This was done in class).
b) Is \bar{X} an UMVUE for θ ?
c) Show that Cramer-Rao's lower bound for the variance of unbiased estimators for θ^{2} is

$$
\frac{4 \theta^{2} \sigma^{2}}{n}
$$

d) Show that

$$
W(\boldsymbol{X})=\bar{X}^{2}-\frac{\sigma^{2}}{n}
$$

is an unbiased estimator of θ^{2}, but has a variance that is larger than Cramer-Rao's lower bound. (Hint: In order to simplify the computation You may use that the fourth order moment in a normal distribution is:

$$
E\left[X^{4}\right]=\theta^{4}+6 \theta^{2} \sigma^{2}+3 \sigma^{4}
$$

Problem 6

In the derivation of the Cramer-Rao inequality we assumed that the parameter θ is one-dimensional. By going through the proof one may see that there may well be more parameters than θ in the modell. If, for example, θ, η are unknown, we may deduce

$$
\operatorname{Var}_{\theta, \eta}(W) \geq \frac{\left(\frac{d}{d \theta} E_{\theta, \eta} W\right)^{2}}{\operatorname{Var}_{\theta, \eta}\left(\frac{\partial}{\partial \theta} \log f(\boldsymbol{X} \mid \theta)\right)}
$$

Let X_{1}, \ldots, X_{n} be i.i.d. from $N\left(\mu, \sigma^{2}\right)$, where both parameters are unknown. Find lower bounds on the variance of unbiased estimators of, respectively, μ and σ^{2}. Compare to the variances of \bar{X} and S^{2}.

