
Chapter 1. Probability Theory 

 

Sample space S - All possible outcomes of a particular experiment. 

Event A – Subset of S 

Probability – P(A).    :  R 0,1P A S   

 

σ - algebra  (Definition 1.2.1) 

A collection of subsets of S, B, that fulfills 
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S finite or countable B is all subset of S 

S not countable for instance. S= ,  . B is all possible intervals of the type 

(a,b), (a, b], [a, b), [a,b].  (Borel σ - algebraen ) 

 

Probability function (Definition 1.2.4) 

Given S and B, a probability function is a function that satisfies 
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Calculus of probability 

 

1. Addition rule (1.2.9) 

       P A B P A P B P A B    

 

2. Multiplication rule 

     P A B P A B P B    (1.3.3) 

 

3. The law of total probability (1.2.11) 
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4. Bayes rule (1.3.5) 
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Independence (1.3.12) 

     P A B P A P B   

 

 



 

Random variables 

 

X random variable.  :X S R  (Definition 1.4.1) 

 

Distribution function 

   ,  xX XF x P X x    (Definition 1.5.1) 

  is discrete if  is a step function XX F x  

  is continuous if  is a continuous functionXX F x  

 

Probability mass function (X discrete) 

      { : }X X j jf x P X x P s S X s x      

   X X

x a

F a P X x


   

Support of X: All x for which   0XP X x   

 

Probability density function (X continuous) 

    ,  x

x

X XF x f t dt


   

   X X

d
f x F x

dx
  

Support of X: All x for which   0Xf x   

 



Identical distributed variables (Definition 1.5.8) 

If    P X A P Y A A B      then X and Y  are identical distributed 

 

 

Chapter 2. Transformations and Expectations 

 

Distributions of Functions of a Random Variable (2.1) 

X is defined on  og ( )Y g X  is defined on  .  

        1( ) { : ( ) }P Y A P g X A P x g x A P X g A         

 1 { : ( ) }g A x g x A     

 1 { : ( ) }g y x g x y     

X discrete 

     
 1

,  for y .Y

x g y

f y P Y y P X x


      

X continous 

         
{ : ( ) }

( ) { : ( )Y X

x g x y

F y P Y y P g X y P x g x y f x dx
 

           

Monotone transformations (page 50) 

g increasing if ( ) ( )u v g u g v    

g decreasing if ( ) ( )u v g u g v    

g increasing or decreasing  g is monotone. 
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Theorem 2.1.8 

Let X have pdf  Xf x ,  let ( )Y g X  and let   be the sample space. 

Suppose there exist a partition, 0 1, , , kA A A  of   such that 

 0 0P X A   and  Xf x  is continuous on each iA . Further suppose 

there exist functions    1 , , kg x g x  defined on 1, , kA A , repectively, 

satisfying: 

i.  ( ) ,  for i ig x g x x A   

ii.    is monotone on i ig x A  

iii. The set  : ( ) for some i iy y g x x A     is the same for each 

1,2, ,i k , 

iv.  and  1

ig y  has a continuous derivative on  , for each 

1,2, ,i k  

Then  
    1 1

1

,

0              otherwise

k

X i

iY

d
f g y g y y

f y dy

 






 




 

 

 

 

 

 



 

 

 

Expected Value (2.2) 

If 
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 Definition 2.2.1 
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Momentgenerating function (2.3) 
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Convergence concepts 

 

Convergence in probability:  

   
1

 if   0, lim 0.
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Weak law of large numbers 

       2

1
,  E  and Var . Then lim 1i i i ni n

X iid X X P X   
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Convergence in distribution 
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 if  lim  at all  where is continuous.
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Central Limit Theorem 
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Slutsky’s Theorem. 

,  ,  then
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Delta method 
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Sufficient statistics 

A statistic  T X  is a sufficient statistic for   if the conditional 

distribution of the sample X given the value of  T X  does not depend 

on  . 

 

A sufficient statistics for a parameter (-vector)   is a statistic that in a 

certain sense, captures all the information about   in the sample.  

 

 

 

 



 

Theorem 6.2.2 

If  p x   is the pdf/pmf of X  and  q t   is the pdf/pmf of  T X , 

then  T X  is a sufficient statistics for   if, for every x  in the sample 

space the ratio 
 
  

p

q T

x

x




is a constant as a function of  . 

 

Theorem 6.2.6 

Let  f x  be the joint pdf/pmf for a sample X .  T X  is a sufficient 

statistics for   if and only if for all x  and all   . 

                                f g T h x X x  

 

Minimal sufficient.  

Definition 6.2.11. A sufficient statistics  T X is called a minimal 

sufficient statistics if for any other sufficient statistics  'T X ,  T X  

is a function of  'T X . 

 

Theorem 6.2.3 

Let  f x  be the joint pdf/pmf for a sample X . Suppose there exists 

a  T X  such that for every x  and every y ,    /f f x y  is a 

constant as a function of     T X =  T Y . Then  T X is a minimal 

sufficient statistics for  . 



 

Definition 6.2.21 

Let  f t   be a family of pdfs/pmfs for a statistic  T X . The family is 

complete if  

  0E g T        0 1P g T   , for all  . 
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Invariance principle: 

                 If ̂  is the MLE of  ,   ˆ   is the MLE of    . 

 

Bayes estimation: 

                 Prior:                   Posterior:    x  
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The mean square error 
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Score statistic 

   logS f 






X X  

  0E S    X  
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Equality 

 If and only if        S a W      X X  

 

Cramer-Rao in the multiparameter case 
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Define the Score function   
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Define the Fisher information    I Cov     S X  

We have as in the univariate case that  E     0S X  and 
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  S X S X  =  E H   X  where 

 logij
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x .  

If  W X  is an unbiased estimator for  . Then  
1

   is taken as an 

approximation to  Cov   W X  

Let      be univariate and let    = 
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Theorem. For an estimator  W X with  E W   X , we have under 

similar regularity conditions as in the univariate case that  

          
-1T

Var W I        X . 

 

Sufficiency and Unbiasedness 



W unbiased estimator of    .  

T a sufficient statistic  E W T       and   ,  Var W T Var W       

T complete  E W T    is the unique best unbiased estimator for     
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Hypothesis testing. 

0 0 1 0:       : CH H    
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Reject if   c x . 

 

Power function 

  ( )P X R     

 

UMP 

   '

0         

 

Neyman-Pearson 

0 0 1 1:       :  H H      



UMP level   test. 

   1 0 if  x R f x kf x    

   1 0 if  Cx R f x kf x    

0
for some  0 and  = ( )k P X R   

Interval Estimator 

   ,L U  X X  

 

Interval Estimate 

   ,L U  x x  

 

Coverage Probability 

    ,P L U   X X  



 

 

 



Credible sets. 
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