Chapter 1. Probability Theory

Sample space S - All possible outcomes of a particular experiment.
Event A —Subset of S

Probability — P(A). P(A):S —RN[0,1]

o - algebra (Definition 1.2.1)

A collection of subsets of S, B, that fulfills

1. peB
2. AeB=>A°eB

3. Aquv-EB:OA €B

S finite or countable = B is all subset of S

S not countable for instance. S=(—oo, OO). B is all possible intervals of the type

(a,b), (a, b, [a, b), [a,b]. (Borel o - algebraen)

Probability function (Definition 1.2.4)
Given S and B, a probability function is a function that satisfies

1. P(A)>0V AeB
2. P(8)=1

A= P(0A]-Erw)



Calculus of probability

1. Addition rule (1.2.9)
P(AU B): P(A)+ P(B)— P(Aﬂ B)

2. Multiplication rule

P(ANB)=P(AB)-P(B) (1.3.3)

3. The law of total probability (1.2.11)

S=(JC., C,NC,=¢, Vi j.Then
i=1

P(A):iP(AﬂCi):iP(NCi PP(C)).

i=1 i=1

4. Bayes rule (1.3.5)

P(C,|A) - P(CNA)_ P AIC)P(C)

PN S p(AlG,)P(c))

j=1
Independence (1.3.12)
P(Aﬂ B) = P(A)- P(B)



Random variables

X random variable. X :S — R (Definition 1.4.1)

Distribution function
F, (x) =P, (X <x), Vx (Definition 1.5.1)
X is discrete if F, (x) is a step function

X is continuous if F, (x) is a continuous function

Probability mass function (X discrete)
f (X) =P (X =x)=P({s; €S: X (s;) =}

R (2)= 2P (X =)

X<a

Support of X: All x for which P, (X =x)>0

Probability density function (X continuous)

F(x)= [ f (1), v

()= < Fy (%)

Support of X: All x for which f, (x)>0



Identical distributed variables (Definition 1.5.8)

If P(X S A) = P(Y € A)VAE B then Xand Y are identical distributed

Chapter 2. Transformations and Expectations

Distributions of Functions of a Random Variable (2.1)

Xis defined onX og Y = g(X) is defined on Y.
P(YeA)=P(g(X)eA)=P({xeX:g(x)e A})=P(X eg*(A))
g7 (A)={xeX:g(x) e A}
g7 (y)={xeX:g(x) =y}

X discrete

f,(y)=P(Y=y)= > P(X=x) foryeT.
xeg (y)

X continous

F(Y)=P(Y<y)=P(g(X)<y)=P({xeX:g(x)<y)= _[ f, (x)dx

{xeX:g(x)<y}
Monotone transformations (page 50)
g increasing if u>v=g(u) > g(v)
g decreasing if u>v=g(u) <g(v)

g increasing or decreasing < g is monotone.



0, elles

Theorem 2.1.8

Let X have pdf f, (X), let Y =g(X) and let y be the sample space.
Suppose there exist a partition, A, A,..., A, of y such that
P(X € A))=0and f, (X) is continuous on each A . Further suppose
there exist functions g, (X),...,g,(X) defined on A,..., A, repectively,
satisfying:

i.  g(x)=g;(x), forxe A

i.  g;(x) is monotone on A

iii. Theset Y={y:y=g(x) for somexe A} is the same for each

1=12,...,k,
iv.  and g;"(y) has a continuous derivative on Y, for each
1=12,...,k

yeY

Then f, (y)= kl fx(gil(y))‘diygl(y)

0 otherwise



Expected Value (2.2)

If <

S P (x =

Definition 2.2.1

0

E[g(X)]=

LxeX

£ So(x) |- Se[0(x)]

j|x|f X)dx < oo
then E[X] =;

| [a00, 00
> 9(x)P(X =

_[ xf, dx<oo

ZXP (X =

Momentgenerating function (2.3)

M, (t)=E[e* |=1~

My (t)=E[ X"e™ ]

je“f
Ze‘XP

dx X continuous

. X discrete



Week 35

Overview of some natural occurring distributions

Independent trials
Register: A/A°
P(4)=p

Events in disjoint timeintervals are
independent
P(One event in At) = At +o(At)

P(More than one event in At) = o(At)

X=number of times A occurs in n trials

P(X =x) :mp‘(1—p)”"",x:0,1,...,n

X=number of times A occur in [0,t]
() e

x!

P(X=x)= ,x=0,12,...

X=number of trials until A occurs for the first
time
P(X =x) :(l—p)"'_l p.x=12,...

X=time until A occurs for the first time

() ={ oo

X=number of trials until A occurs for the r-th
time

lJp"(l—p)x—r, X=rr+l,...

0, otherwise
X=time until A occurs the r-th time

AT
——x"e™, x>0

fe(x)=1T(r)

0, otherwise




Gamma distribution

Sy (x)= N 1) xa_le_%,x>0, a>0, 3>0.
~T(a,f)=Y=cX ~T(a,cpB)
E[ } F(Oli-(F;l)) , N> -



Beta distribution

f(x|a,[7’)=rl;(ofcg;flg))x“‘l(l—x)[f_l, O0<x<l, a>0, >0
E[X”] _ C(a+n)T(a+p) e

Ma+p+n)T(a)



Exponential Class of distributions

Location — Scale Families
/(x) pdf. The family of pdfs: i f [
o

HE (—00500), G>0
The distribution of ¥ = u+ocX

Chebyshevs
g(x)=0, r>0
Eg(X)

r

P(g(X)Zr)§




Bivariate transformations

Monotone

U=g1(X,Y) thl(U,V)
j—

V=g2(X,Y) Yzhz(U,V)

Joy W)= 1y (hl (u.v).h, (u,v))|J|

Hierarchical Models and Mixture Distributions
XY ~B(Y.p)

Y|A ~ Po(A)

A ~exp(f)

E[X]=E| E[X|r]]

Var[X]=E|Var[ X|Y ]|+ Var| E[ X|Y]]



Week 39
Holders Inequality

1 1

[E[xy]|< Elxy| < (E[x]" ) (E]x]" ), LI

Jensen’s Inequality
E[g(X)] > g(E[X]), g(x) convex

Chapter 5 Random Sample

Random sample: X,..... X, areiid.

Statistic: 7'( X,,...,X,)

Some properties of Statistics

X,,...,X, are N(u,al)

)?=liX, and §* =——3 (X,—)_()2 are independent
n -

i=1 n—1 i1
_ 2 71 SZ i
X~N(#,U—], uw{'(n—l)
n (o

X - N(0,1
T-statistic: X—,“u, In general 7, = (0.)

- "7

z P

Var[Tp] __P_
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Convergence concepts

Convergence in probability:

N—o0

{xi};ix if V&>0, imP(|X,-X|2¢)=0.



Weak law of large numbers

{X;} ,iid, E[X;]=u and Var(X;)=o® <co. Then lim P(

N—o0

)?n—,u‘<g):1

(X,}", > X then {h(X,)}", —>h(X) ifh is continuous,

Convergence in distribution

{Xi};’;—D)X if limF, (x)=F, (x) atall x where F, (x)is continuous.

nN—o0

P D

{Xi}zlﬁx :{Xi};_))(

Central Limit Theorem

{X;}_,iid, E[X;]=u and Var(X;) = 0* <.

n — D
Define X, == 3" X,. Then \/H(X“ “j—>x where X ~ N(0,1).
n4s

o)

Slutsky’s Theorem.

D P
X, =X, Y —a, then

D
a) XY, —>aX
b)X, +Y, > X +a
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Delta method
Jn(Y,~0)>N(0,0%)=¥n(g(¥,)-9(8)) >N (0.0°[g'(6) ]

g'(8)=0

Jn(y, —e)—D> N(0,0%)=+n(g(Y,)-g (9))66—2[9 "(0)] %

2

Sufficient statistics

A statistic T (X ) is a sufficient statistic for @ if the conditional
distribution of the sample X given the value of T (X ) does not depend

on @.

A sufficient statistics for a parameter (-vector) @ is a statistic that in a
certain sense, captures all the information about @ in the sample.



Theorem 6.2.2
If p(x|@) is the pdf/pmf of X and q(t|@) is the pdf/pmf of T(X),

then T (X) is a sufficient statistics for @ if, for every X in the sample
P(x|6)

a(T(x)|6)

space the ratio is a constant as a function of 6.

Theorem 6.2.6

Let f (X|0) be the joint pdf/pmf for a sample X. T (X) is a sufficient

statistics for @ if and only if for all X and all & .

f(x]0)=g(T(X]0))h(x)

Minimal sufficient.
Definition 6.2.11. A sufficient statistics T ( X )is called a minimal

sufficient statistics if for any other sufficient statistics T (X), T(X)
is a function of T (X).

Theorem 6.2.3

Let f (X|0) be the joint pdf/pmf for a sample X . Suppose there exists
a T(X) such that for every X and every vy, f (X|6?)/ f (y|<9) isa
constant as a function of @ < T(X)=T(Y).Then T (X )is a minimal

sufficient statistics for &.



Definition 6.2.21

Let f (t|6’) be a family of pdfs/pmfs for a statistic T (X ). The family is

complete if

E,[9(T)|=0=P,(g(T)=0)=1,forall 6.

Completeness and the exponential class

Let X|,..., X, beiid. from an exponential family i.e.

k

> w(8,)(x)
f(xye) = h(x)c(@)e"

Then T'(X) =(itl(X,),itz(X,.),...,it,\ (X,.),j is complete as long
i=l i=1 i=]

as the parameter space contains an open setin R".

Minimal sufficient if w, (6’),1’ =1,2,...n are not linearly dependent
Complete if no functional relationship exists between w, (6’),1’ =1,2,...n

Then also the distribution of

n

T(X) =(Zn:tl ()(!),Zn:t2 (X)) 2 (X, ),] is within the exponential
i=l i=l

i=|

family.
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Invariance principle:

If 6 is the MLE of 8, (@) is the MLE of 7(0).

Bayes estimation:

Prior: z(6) Posterior: 7(6|x)
_f(x,0) f(x]8)=(0)
7(0]x)= f(x)  [f(x6)do
éB - E(9|X)

The mean square error

2

MSE = E| (W -0)" | =Var[W]+(E[W]-0)
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Score statistic

S(X|9):%Iogf(x|9)

E[s(X]0)]=0



0 o

Var| S(X10)|=1, (9):—E[@S(X|Q)}:—E{Wlog f (x|9)}

Let 7(6)=E[W (X)]

Cramer-Rao

Var[W(X)]z(ae

Cramer-Raoiid

Var|W(X)|> (‘%:EZ?

Equality
If and only if S(X |6?) = a(H)[W (X)—T(@)]

Cramer-Rao in the multiparameter case

6=(6,...6,)



- _
a—ellogf(x|¢9)

Define the Score function S(X|9)= : =Vlog f (x|6)

0
%Iogf(xw)

k

Define the Fisher information 1(8) = COV[S(X |0)}

We have as in the univariate case that E[S(X |0)] =0 and
1(6)=E|S(x[6)S(X]6)' | = ~E[H(X6)] where

0 0
h; _a—eia—gjlog f(x|6).

If W (X) is an unbiased estimator for . Then 1(0)_1 is taken as an
approximation to COV[W (X )]

Let 7 =7(@) be univariate and let Vz(8)=

Theorem. For an estimator W (X )withE|W (X )| =, we have under
similar regularity conditions as in the univariate case that

Var[W (X)]=(V(8)) (1(6)) (V=(8))

Sufficiency and Unbiasedness




W unbiased estimator of ().
T a sufficient statistic E[W |T] =7(0) and Var [W |T] <Var[W], V6

T complete = E[W |T] is the unique best unbiased estimator for 7(0)
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Hypothesis testing.

H,:0eQ, H,:0eQ;

LRT

supL( )supL( X)
_Sl;pL( X )_ L(é ) =2*(T(x))

A(%)

Reject if A(X)<

Power function

13(9): P,(X eR)

Neyman-Pearson

Hy:0=60, H,:0=6,




UMP level o test.

xeRif f(x|6,)>kf (x|6,)
xeRC if f(x|6,)<kf (x|6,)
forsome k>0 and & =F, (X €R)

Interval Estimator

LLOX).U (X))

Interval Estimate

LU (X))

Coverage Probability

P(0[L(X),U(X)])




Repetition week 46

Interval estimator [L(X),U(X)]
Interval estimate | L(x),U(x)]

Coverage probability: P, (9 € [L(X),U(X):D

Methods of construction

Invertionof atest H,:0=6, H :0+0,
A(@O)z{x:xeR‘}

C(x)=1{6,:x< A(6,)}

Inveting LRT
C(x)={6,: A(x)= k|

Pivotal Quantity

The distribution of O(X,0) is independent of 6.

(’(x)z{tﬁ?:oc1 SFT(I|9)£1—0¢2}



Credible sets.

P(0<Alx)=[x(6|x)d6

A
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