Cramer-Rao in the multiparameter case

 $\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)$

Define the Score function $S(\boldsymbol{X}|\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \theta_1} \log f(\boldsymbol{x}|\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_i} \log f(\boldsymbol{x}|\boldsymbol{\theta}) \end{bmatrix} = \nabla \log f(\boldsymbol{x}|\boldsymbol{\theta})$

Define the Fisher information $I(\theta) = Cov [S(X|\theta)]$

We have as in the univariate case that $E[S(X|\theta)] = 0$ and $I(\theta) = E[S(X|\theta)S(X|\theta)^T] = 0$

$$-E\left[H\left(\boldsymbol{X}|\boldsymbol{\theta}\right)\right] \text{ where } h_{ij} = \frac{\partial}{\partial\theta_i} \frac{\partial}{\partial\theta_j} \log f\left(\boldsymbol{x}|\boldsymbol{\theta}\right).$$

Let
$$\tau = \tau(\boldsymbol{\theta})$$
 be univariate and let $\nabla \tau(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \theta_1} \tau(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_k} \tau(\boldsymbol{\theta}) \end{bmatrix}$

Theorem. For an estimator W(X) with $E[W(X)] = \tau$, we have under similar regularity conditions as in the univariate case that $Var[W(X)] \ge (\nabla \tau(\theta))^T (I(\theta))^{-1} (\nabla \tau(\theta))$.

Proof

$$\frac{\partial}{\partial \theta_{i}}\tau(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{i}}\int W(\boldsymbol{x})f(\boldsymbol{x},\boldsymbol{\theta})d\boldsymbol{x} = \int W(\boldsymbol{x})\frac{\partial}{\partial \theta_{i}}f(\boldsymbol{x},\boldsymbol{\theta})d\boldsymbol{x} = \int W(\boldsymbol{x})\left(\frac{\partial}{\partial \theta_{i}}\log f(\boldsymbol{x},\boldsymbol{\theta})\right)f(\boldsymbol{x},\boldsymbol{\theta})d\boldsymbol{x} = E\left[W(\boldsymbol{X})S_{i}\left(\boldsymbol{X}|\boldsymbol{\theta}\right)\right]$$

where $S_{i}\left(\boldsymbol{X}|\boldsymbol{\theta}\right) = \frac{\partial}{\partial \theta_{i}}\log f\left(\boldsymbol{X},\boldsymbol{\theta}\right)$. This implies: $\nabla \tau\left(\boldsymbol{\theta}\right) = E\left[W(\boldsymbol{X})S\left(\boldsymbol{X}|\boldsymbol{\theta}\right)\right]$.

Since $S(X|\theta)$ is a vector we know introduce a scalar $U(X|\theta) = (\nabla \tau(\theta))^T (I(\theta))^{-1} S(X|\theta)$. We obtain:

$$Cov \Big[W(\boldsymbol{X}), U(\boldsymbol{X}|\boldsymbol{\theta}) \Big] = \big(\nabla \tau(\boldsymbol{\theta}) \big)^{T} \big(I(\boldsymbol{\theta}) \big)^{-1} E \Big[S(\boldsymbol{X}|\boldsymbol{\theta}) W(\boldsymbol{X}) \Big] = \big(\nabla \tau(\boldsymbol{\theta}) \big)^{T} \big(I(\boldsymbol{\theta}) \big)^{-1} \big(\nabla \tau(\boldsymbol{\theta}) \big)^{T} \big(I(\boldsymbol{\theta}) \big)^{T}$$

and using that $Var[a^T X] = a^T Cov[X]a$ we get

$$Var\left[U\left(\boldsymbol{X}|\boldsymbol{\theta}\right)\right] = \left(\nabla\tau\left(\boldsymbol{\theta}\right)\right)^{T}\left(I\left(\boldsymbol{\theta}\right)\right)^{-1}\left(I\left(\boldsymbol{\theta}\right)\right)\left(I\left(\boldsymbol{\theta}\right)\right)^{-1}\left(\nabla\tau\left(\boldsymbol{\theta}\right)\right) = \left(\nabla\tau\left(\boldsymbol{\theta}\right)\right)^{T}\left(I\left(\boldsymbol{\theta}\right)\right)^{-1}\left(\nabla\tau\left(\boldsymbol{\theta}\right)\right)$$

From Cauchy Schwartz we then have that :

$$\left(Cov \left[W(\boldsymbol{X}), U(\boldsymbol{X} | \boldsymbol{\theta}) \right] \right)^{2} \leq Var \left[W(\boldsymbol{X}) \right] Var \left[U(\boldsymbol{X} | \boldsymbol{\theta}) \right]$$

or
$$\left[\left(\nabla \tau(\boldsymbol{\theta}) \right)^{T} \left(I(\boldsymbol{\theta}) \right)^{-1} \left(\nabla \tau(\boldsymbol{\theta}) \right) \right]^{2} \leq \left(\nabla \tau(\boldsymbol{\theta}) \right)^{T} \left(I(\boldsymbol{\theta}) \right)^{-1} \left(\nabla \tau(\boldsymbol{\theta}) \right) Var \left[W(\boldsymbol{X}) \right]$$

Let X_1, \dots, X_n be iid with pdf/pmf $f(x|\theta)$ and $Cov[S(X_i|\theta)] = I(\theta)$. Then $Cov[S(X|\theta)] = nI(\theta)$. If $\hat{\theta}_n$ is the MLE of θ and $\hat{\theta}_n \xrightarrow{P} \theta$, then $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{D} N(\theta, I^{-1}(\theta))$ or $Cov(\hat{\theta}_n) \approx \frac{1}{n} I^{-1}(\theta)$ or $Cov[S(X|\theta)]^{-1}$.