
                  Cramer-Rao in the multiparameter case 
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Define the Fisher information ( ) ( )I Cov  =  S X   

We have as in the univariate case that ( )E   =  0S X   and ( ) ( ) ( )
T

I E  =
 
S X S X    = 

( )E H −  X   where ( )logij

i j

h f
 

 
=
 

x  . 

Let ( ) =   be univariate and let ( )  = 

( )

( )

1

k







 
 
 
 
 
 

  





 

Theorem. For an estimator ( )W X with ( )E W =  X , we have under similar regularity 

conditions as in the univariate case that ( ) ( )( ) ( )( ) ( )( )
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Proof 
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Since ( )S X   is a vector we know introduce a scalar ( ) ( )( ) ( )( ) ( )
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We obtain:  
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and using that  T TVar Cov  = a X a X a we get  
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From Cauchy Schwartz  we then have that :  
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Let 
1 nX , ,X  be iid with pdf/pmf ( )f x   and ( ) ( )iCov X  = S I  . Then 

( ) ( )Cov n  = S X I  . If n̂  is the MLE of   and 
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