
 

                                   Exercise 8. TMA4295 

 

 

Hint. You can use the fact that the pdfs in the gamma distribution belong to an 

exponential famaily.  

 

Problem 2 

Let 
1 2, ,X X  be a sequence of independent random variables each with probability 

density function given by  
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which is a chi square distribution with one degree of freedom.  

a) Explain why 1 2, ,X X also can be considered as gamma distributed random 

variables with parameters   and  .  Find   and   and use them to show 

that the expectation and variance of iX  equal 1 and 2 respectively, 1 2i , ,=  .   
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 has a limiting standard normal distribution.  

 



c) Let 
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in distribution. Let 

 1 2iY , i , , ,n=  be a sequence of independent and identical normally 

distributed variables with mean   and variance 2 . For   known, an 

estimator for the standard deviation,   , is given by 
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an approximation of the variance of 
nS that applies for large n . 

 

Problem 3  

Let 
1 nX X  be iid uniformly distributed on the interval  0, . It was shown in 

exercise 7 that the statistic  

 

 

 

 

 



 


