Exercise 8. TMA4295

Problem 1

Let $X \sim \text{gamma}(\alpha, \beta)$ where $\alpha, \beta > 0$ (see the density on page 624 in book). Show that

$$E(\ln X) = \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \ln \beta.$$

Hint. You can use the fact that the pdfs in the gamma distribution belong to an exponential famaily.

Problem 2

Let $X_1, X_2,...$ be a sequence of independent random variables each with probability density function given by

$$f(x|v) = \frac{1}{\Gamma(\frac{v}{2})2^{\frac{v}{2}}} x^{\frac{v}{2}-1} e^{\frac{-x}{2}}, \quad 0 < x < \infty, \quad v=1$$

which is a chi square distribution with one degree of freedom.

a) Explain why $X_1, X_2,...$ also can be considered as gamma distributed random variables with parameters α and β . Find α and β and use them to show that the expectation and variance of X_i equal 1 and 2 respectively, i = 1, 2, ...

b) Let
$$Z_n = \sum_{i=1}^n X_i$$
, $n=1,2,...$. What is the distribution of Z_n ? Explain why $\sqrt{n} \left(\frac{Z_n}{n\sqrt{2}} - \frac{1}{\sqrt{2}}\right)$ has a limiting standard normal distribution.

c) Let
$$W_n = \left(\frac{Z_n}{n\sqrt{2}}\right)^{\frac{1}{2}}$$
. Show that $\sqrt{n}\left(W_n - \left(\frac{1}{2}\right)^{\frac{1}{4}}\right) \rightarrow N\left(0, 2^{-3/2}\right)$ in distribution. Let

 Y_i , i = 1, 2, ..., n be a sequence of independent and identical normally distributed variables with mean μ and variance σ^2 . For μ known, an

estimator for the standard deviation, σ , is given by $S_n = \sqrt{\frac{\sum_{i=1}^n (Y_i - \mu)^2}{n}}$. Find an approximation of the variance of S_n that applies for large n.

Problem 3

Let $X_1...X_n$ be iid uniformly distributed on the interval $[0,\theta]$. It was shown in exercise 7 that the statistic

$$T(\boldsymbol{X}) = \max\{X_1, \dots, X_n\}$$

is sufficient for θ .

- a) Find the moment estimator of θ . Can this be written as a function of $T(\mathbf{X})$? Give a comment.
- b) Let n = 3 and assume that the observations are 0.1, 0.9, 8.0. Compute the moment estimate. Is this estimate of θ reasonable?
- c) Derive the MLE for θ . Find its expectation, variance and Mean Squared Error (MSE), i.e. $E(\hat{\theta} \theta)^2$).
- d) Find an unbiased estimator for θ on the form const $T(\mathbf{X})$. Find the estimator's variance and compare with the MSE of, respectively, the moment estimator and the MLE.

Problem 4 (Bayes estimation)

Let $\mathbf{X} = (X_1, \dots, X_n)$ be *n* observations from $N(\theta, \sigma^2)$, where σ^2 is known. Assume that we have given a prior distribution for θ given by $N(m, \tau^2)$.

a) Show that the posterior distribution for θ given X = x is given by

$$N\left(\frac{\sigma^2}{\sigma^2 + n\tau^2}m + \frac{n\tau^2}{\sigma^2 + n\tau^2}\bar{x}, \frac{\sigma^2\tau^2}{\sigma^2 + n\tau^2}\right)$$

Try to minimize the computation (it may be cumbersome otherwise!) See also Example 7.2.16 in the book.

- **b**) Which family of distributions is hence conjugate to the normal distribution?
- c) What is the Bayes-estimator for θ ? Which is the weight it puts on the prior knowledge versus the information from the data X? Give a comment.