Slides week 37

Exponential Class of distributions

$f(x \mid \boldsymbol{\theta})=h(x) c(\boldsymbol{\theta}) e^{\sum_{i=1}^{k} w_{i}\left(\boldsymbol{\theta} t_{i}(x)\right.}$
$E\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\theta)}{\partial \theta_{j}} t_{i}(X)\right)=-\frac{\partial}{\partial \theta_{j}} \log c(\theta)$
$\operatorname{Var}\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\theta)}{\partial \theta_{j}} t_{i}(X)\right)=-\frac{\partial^{2}}{\partial \theta_{j}} \log c(\theta)-E\left(\sum_{i=1}^{k} \frac{\partial^{2} w_{i}(\theta)}{\partial^{2} \theta_{j}} t_{i}(X)\right)$

Location - Scale Families
$f(x)$ pdf. The family of pdfs: $\frac{1}{\sigma} f\left(\frac{x-u}{\sigma}\right)$,
$\mu \in(-\infty, \infty), \sigma>0$
The distribution of $Y=\mu+\sigma X$

Chebyshevs

$g(x) \geq 0, \mathrm{r}>0$
$P(g(X) \geq r) \leq \frac{E g(X)}{r}$

Bivariate transformations

Monotone

$$
\left.\begin{aligned}
& U=g_{1}(X, Y) \\
& V=g_{2}(X, Y)
\end{aligned} \Rightarrow\left\{\begin{array}{l}
X=h_{1}(U, V) \\
Y=h_{2}(U, V)
\end{array}\right] \begin{array}{|ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array} \right\rvert\,-1 .
$$

