Repetition week 44

Score statistic

$$\begin{split} S\left(X\middle|\theta\right) &= \frac{\partial}{\partial\theta}\log f\left(X\middle|\theta\right) \\ E\left[S\left(X\middle|\theta\right)\right] &= 0 \\ Var\left[S\left(X\middle|\theta\right)\right] &= I_X\left(\theta\right) = -E\left[\frac{\partial}{\partial\theta}S\left(X\middle|\theta\right)\right] = -E\left[\frac{\partial^2}{\partial\theta^2}\log f\left(X\middle|\theta\right)\right] \\ \text{Let } \tau(\theta) &= E\left[W\left(X\right)\right] \end{split}$$

Cramer-Rao

$$Var[W(X)] \ge \frac{\left(\frac{\partial}{\partial \theta}\tau(\theta)\right)^2}{I_X(\theta)}$$

Cramer-Rao iid

$$Var[W(X)] \ge \frac{\left(\frac{\partial}{\partial \theta}\tau(\theta)\right)^2}{nI_X(\theta)}$$

Equality

If and only if
$$S(X|\theta) = a(\theta)[W(X) - \tau(\theta)]$$

Cramer-Rao in the multiparameter case

$$\boldsymbol{\theta} = \left(\theta_1, \dots \theta_k\right)^t$$

Define the Score function
$$S(X|\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \theta_1} \log f(x|\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_k} \log f(x|\boldsymbol{\theta}) \end{bmatrix} = \nabla \log f(x|\boldsymbol{\theta})$$

Define the Fisher information $I(\boldsymbol{\theta}) = Cov[S(X|\boldsymbol{\theta})]$

We have as in the univariate case that $E[S(X|\theta)] = 0$ and

$$I(\boldsymbol{\theta}) = E\left[S(X|\boldsymbol{\theta})S(X|\boldsymbol{\theta})^{T}\right] = -E\left[H(X|\boldsymbol{\theta})\right] \text{ where}$$

$$h_{ij} = \frac{\partial}{\partial \theta_{i}} \frac{\partial}{\partial \theta_{j}} \log f(x|\boldsymbol{\theta}).$$

If W(X) is an unbiased estimator for $m{ heta}$. Then $m{I}(m{ heta})^{\!-\!1}$ is taken as an approximation to Covig[W(X)ig]

Let
$$\tau = \tau(\boldsymbol{\theta})$$
 be univariate and let $\nabla \tau(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \theta_1} \tau(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_k} \tau(\boldsymbol{\theta}) \end{bmatrix}$

Theorem. For an estimator W(X) with $E[W(X)] = \tau$, we have under similar regularity conditions as in the univariate case that

$$Var[W(X)] \ge (\nabla \tau(\boldsymbol{\theta}))^T (I(\boldsymbol{\theta}))^{-1} (\nabla \tau(\boldsymbol{\theta})).$$

Sufficiency and Unbiasedness

W unbiased estimator of $\tau(\theta)$.

T a sufficient statistic $E[W|T] = \tau(\theta)$ and $Var[W|T] \le Var[W]$, $\forall \theta$

T complete \Rightarrow Eig[Wig|Tig] is the unique best unbiased estimator for au(heta)

Definition 6.2.21

Let $f(t|\theta)$ be a family of pdfs/pmfs for a statistic T(X). The family is complete if

$$E_{\theta}[g(T)] = 0 \Rightarrow P_{\theta}(g(T) = 0) = 1$$
, for all θ .