Cramer-Rao in the multiparameter case

$$\boldsymbol{\theta} = (\theta_1, \dots \theta_k)$$

Define the Score function
$$S(X|\theta) = \begin{bmatrix} \frac{\partial}{\partial \theta_1} \log f(X|\theta) \\ \vdots \\ \frac{\partial}{\partial \theta_i} \log f(X|\theta) \end{bmatrix} = \nabla \log f(X|\theta)$$

Define the Fisher information $I(\theta) = Cov[S(X|\theta)]$

We have as in the univariate case that $E[S(X|\theta)] = 0$ and $I(\theta) = E[S(X|\theta)S(X|\theta)^T] = -E[H(X|\theta)]$ where $h_{ij} = \frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_j} \log f(X|\theta)$.

Let
$$\tau = \tau(\boldsymbol{\theta})$$
 be univariate and let $\nabla \tau(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \theta_{1}} \tau(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_{k}} \tau(\boldsymbol{\theta}) \end{bmatrix}$

Theorem. For an estimator W(X) with $E[W(X)] = \tau$, we have under similar regularity conditions as in the univariate case that $Var[W(X)] \ge (\nabla \tau(\theta))^T (I(\theta))^{-1} (\nabla \tau(\theta))$.

Proof

$$\frac{\partial}{\partial \theta_{i}} \tau(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{i}} \int W(\boldsymbol{x}) f(\boldsymbol{x}, \boldsymbol{\theta}) d\boldsymbol{x} = \int W(\boldsymbol{x}) \frac{\partial}{\partial \theta_{i}} f(\boldsymbol{x}, \boldsymbol{\theta}) d\boldsymbol{x} = \int W(\boldsymbol{x}) \left(\frac{\partial}{\partial \theta_{i}} \log f(\boldsymbol{x}, \boldsymbol{\theta}) \right) f(\boldsymbol{x}, \boldsymbol{\theta}) d\boldsymbol{x} = E[W(\boldsymbol{X}) S_{i}(\boldsymbol{X} | \boldsymbol{\theta})]$$
where $S_{i}(\boldsymbol{X} | \boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{i}} \log f(\boldsymbol{X}, \boldsymbol{\theta})$. This implies: $\nabla \tau(\boldsymbol{\theta}) = E[W(\boldsymbol{X}) S(\boldsymbol{X} | \boldsymbol{\theta})]$.

Since $S(X|\theta)$ is a vector we know introduce a scalar $U(X|\theta) = (\nabla \tau(\theta))^T (I(\theta))^{-1} S(X|\theta)$. We obtain:

$$Cov[W(X),U(X|\theta)] = (\nabla \tau(\theta))^{T} (I(\theta))^{-1} E[S(X|\theta)W(X)] = (\nabla \tau(\theta))^{T} (I(\theta))^{-1} (\nabla \tau(\theta))$$

and using that $Var[a^T X] = a^T Cov[X]a$ we get

$$Var \left[U \left(X | \boldsymbol{\theta} \right) \right] = \left(\nabla \tau \left(\boldsymbol{\theta} \right) \right)^{T} \left(I \left(\boldsymbol{\theta} \right) \right)^{-1} \left(I \left(\boldsymbol{\theta} \right) \right) \left(I \left(\boldsymbol{\theta} \right) \right)^{-1} \left(\nabla \tau \left(\boldsymbol{\theta} \right) \right) = \left(\nabla \tau \left(\boldsymbol{\theta} \right) \right)^{T} \left(I \left(\boldsymbol{\theta} \right) \right)^{-1} \left(\nabla \tau \left(\boldsymbol{\theta} \right) \right)^{T} \left(I \left(\boldsymbol{\theta} \right) \right)^{-1} \left(\nabla \tau \left(\boldsymbol{\theta} \right) \right)^{T} \left(I \left$$

From Cauchy Schwartz we then have that:

$$\left(Cov\left[W(X),U(X|\theta)\right]\right)^{2} \leq Var\left[W(X)\right]Var\left[U(X|\theta)\right]$$
or
$$\left[\left(\nabla \tau(\theta)\right)^{T}\left(I(\theta)\right)^{-1}\left(\nabla \tau(\theta)\right)\right]^{2} \leq \left(\nabla \tau(\theta)\right)^{T}\left(I(\theta)\right)^{-1}\left(\nabla \tau(\theta)\right)Var\left[W(X)\right]$$

Let
$$X_1, \dots, X_n$$
 be iid with pdf/pmf $f\left(x\middle|\theta\right)$ and $Cov\left[S\left(X_i\middle|\theta\right)\right] = I\left(\theta\right)$. Then $Cov\left[S\left(X\middle|\theta\right)\right] = nI\left(\theta\right)$. If $\hat{\theta}_n$ is the MLE of θ and $\hat{\theta}_n \overset{P}{\to} \theta$, then
$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \overset{D}{\to} N\left(\theta, I^{-1}\left(\theta\right)\right) \text{ or } Cov\left(\hat{\theta}_n\right) \approx \frac{1}{n}I^{-1}\left(\theta\right) \text{ or } Cov\left[S\left(X\middle|\theta\right)\right]^{-1}.$$