Problem 1

Let the probability mass function (pmf) of a Bernoulli random variable *X* be given by:

$$f(x|\theta) = \theta^{x} (1-\theta)^{1-x}, x=0,1. \quad \theta \in (0,1).$$

Assume we have a random sample $X_n = X_1, X_2, \dots, X_n$ from this distribution.

- a) Derive the joint probability mass function for $X_1, X_2, ..., X_n$. Show that $Y = \sum_{i=1}^n X_i$ is a sufficient statistic for θ .
- b) What is the distribution of *Y*? Explain your answer. Derive the maximum likelihood estimator for θ based on X_1, X_2, \dots, X_n and find its mean and variance.

We are interested in estimating $\delta(\theta) = \theta(1-\theta)$.

c) What is the maximum likelihood estimator for $\delta(\theta)$, $\hat{\delta}(X_n)$? Derive the expected

value of
$$\hat{\delta}(X_n)$$
. Show that $\delta^*(X_n) = \frac{\sum_{i=1}^n X_i}{n-1} \left(1 - \frac{\sum_{i=1}^n X_i}{n}\right)$ is an unbiased estimator for

- $\delta(\theta).$
- d) Derive the moment generating function for Y given in 1a). Explain carefully (calculations are not necessary) how this can be used to find the variance of $\delta^*(X_n)$.
- e) Is $\delta^*(X_n)$ the unique UMVU estimator for $\delta(\theta)$? Explain your answer. Find the Cramer-Rao lower bound for $Var(\delta^*(X_n))$.
- f) Explain why $\hat{\delta}(X_n)$ converges in probability to $\delta(\theta) = \theta(1-\theta)$ as $n \to \infty$. Show also that $\delta^*(X_n)$ converges in probability to $\hat{\delta}(X_n)$ as $n \to \infty$.

g) Assume $\theta \neq \frac{1}{2}$. Find the asymptotic distribution of $\sqrt{n} \left(\delta^*(X_n) - \delta(\theta) \right)$. Is $\delta^*(X_n)$ asymptotic efficient? Find also the asymptotic distribution when $\theta = \frac{1}{2}$.

Problem 2

Let X_1, X_2, \dots, X_n be independent and identically distributed random variables, each with a probability density function, pdf, given by:

$$f(x|\lambda) = \lambda^2 x e^{-\lambda x}, \quad 0 < x < \infty, \quad \lambda > 0.$$

a) The probability density function above belongs to a well-known family. What is the family and what are the parameters? Show that the maximum likelihood estimator for

$$\lambda$$
 is $\hat{\lambda} = \frac{2n}{\sum_{i=1}^{n} X_i}$

- b) Find the expectation and the variance of $\hat{\lambda}$. Derive a $1-\alpha$ confidence interval for λ .
- c) Assume now that a prior distribution for λ is: $\pi(\lambda) = \theta e^{-\theta\lambda}, \quad 0 < \lambda < \infty, \quad \theta > 0.$

Derive the Bayes estimator, $\hat{\lambda}_B$, for λ given $(X_1, X_2, \dots, X_n) = (x_1, x_2, \dots, x_n)$. Derive also a $1 - \alpha$ credible interval (set) for λ .