
TMA4295 Statistical inference
Exercise 2 - solution

Problem 1
X ⇠ �(↵,�)

a) To find the distribution of cX we can use theorem 2.1.5.
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c) Z1, Z2, ..., Zn ⇠ N(µ,�2) and S2
variance estimator,

Recall that

(n� 1)S2

�2
⇠ �2

n�1

and from the from the previous point we also know that
(n�1)S2

�2 ⇠ �
�
n�1
2 , 2b

�

) S2 ⇠ �

✓
n� 1

2
,
2�2

n� 1

◆

V ar(S2) = n�1
2

4�4

(n�1)2 = 2�4

n�1
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To compute E(S) we can use the previous part with k = 1/2 since S2
has a gamma distribution.
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e) We can then choose as unbiased estimator
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�(n�1

2 )(n� 1)1/2

�(n2 )2
1/2

!2

V ar(S) =

 
�(n�1

2 )(n� 1)1/2

�(n2 )2
1/2

!2

(E(S2)� E(S)2) =

=

 
�(n�1

2 )(n� 1)1/2

�(n2 )2
1/2

!2

(�2 � (�/c)2) = �2

✓
�(n�1

2 )2(n� 1)

�(n2 )2
� 1

◆

1



Problem 3.30

a) Let’s rewrite the pdf of a binomial random variable
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that is an exponential family with
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2.33
MX(t) = E
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�
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a) Use the fact that ey =
1P
k=0

yk

k! for the computation of the moment generating function.
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c) Use completing the square

x2 � 2µx� 2�2tx+ µ2 = x2 � 2(µ+ �2t)x± (µ+ �2t)2 + µ2

= (x� (µ+ �2t))2 � (2µ�2t+ (�2t)2)

and the fact that integrals of the probability density functions over the probability space are

equal to 1 (in this case it leads to the normal distribution) in the computation of the moment

generating function.
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2.35

a) Use the fact that xr = er log(x)
and the substitution y = log(x) and completing the square

together with the form of the normal distribution as in the exercise 2.33c).

b) Use the same transformation xr = er log(x)
and substitution y = log(x) � r. The resulting

integral is an odd function so the negative integral cancels the positive one.
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a) Use the fact that
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b) Use the fact, that M2pX(t) = MX(2pt). The limit can be computed with use of the L’Hospital

rule and the limiting moment generating function is the moment generating function of the �2

squared distribution with 2r degrees of freedom (see tables).

3.28
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d) h(x) = 1
x! , c(✓) = e�✓

, w1(✓) = log(✓), t1(x) = x

3.39
The exercise can be solved for µ = 0 and �2 = 1 and using the substitution z = x�µ

� afterwards,

since we are working with the location-scale family.

a) Since the pdf is symmetrical around 0, 0 must be median. Verifying this, write

P (Z � 0) =

Z 1

0

1

⇡

1

1 + z2
dz =

1

⇡
tan�1(z)

����
1

0

=
1

2

b) P (Z � 1) = 1
4 which also holds for P (Z  �1) by symmetry.
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