TMA4295 Statistical inference
Exercise 2 - solution

Problem 1
X ~T(a, §)

a) To find the distribution of ¢X we can use theorem 2.1.5.
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since Y it also a I'(%,2) then from part (a) we have that bY ~ T (&,2b)

c) Z1,Zy, ... Zy ~ N(p,0?) and S? variance estimator,
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d) X ~T'(e,0) and k > —«
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To compute E(S) we can use the previous part with k = 1/2 since S? has a gamma distribution.
Hence
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e) We can then choose as unbiased estimator
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Problem 3.30

a) Let’s rewrite the pdf of a binomial random variable
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that is an exponential family with
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Theorem 3.4.2 implies that
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Exponential family: f(z]|0) = h(x)c(0)e

8) 1 known: h(w) = 1, ¢(0) = A, wr(0?) = —br, t1(x) = (o — p)?
= 2 " 2
o? known: h(z) =e~ 52 ,co(p) = ;W T ywi(p) = p, ti(z) = 5
b) a known: h(z) = “ila;)l, c(B) = ﬂ%, wy(B) = %, ti(x) = —x

, cla) = ﬁ, wi(a) =a—1, t1(z) = log(x)
1? C(Ol,ﬂ) = Wa ’U}l(OZ) = &= 13 w2(ﬂ)
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«, B unknown: h
ta(z) = x

1
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» ti(x) = log(),



d) h(x) = %, c(0) = e, wy(0) = log(h), t1(x) = =

x

3.39

The exercise can be solved for 4 =0 and 0% = 1 and using the substitution z = ==& afterwards,
since we are working with the location-scale family.

a) Since the pdf is symmetrical around 0, 0 must be median. Verifying this, write

*©1 1 1 <1
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b) P(Z > 1) = ; which also holds for P (Z < —1) by symmetry.



