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Problem 5

X1, ..., Xn i.i.d. N(✓,�

2
).

a) The normal pdf satisfies the assumption of the Cramer-Rao theorem and lemma 7.3.11 So we

have
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Thus the lower bound is given by
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b)

¯

X is UMVUE since E(
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X) = ✓ and V ar(

¯
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c) Using lemma 7.3.11 we have
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Thus the lower bound is given by
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d) W (X) is unbiased since
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but the variance
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Problem 6

X1, ..., Xn i.i.d. N(µ,�

2
) with µ and �

2
unkwown. Using lemma 7.3.11 as we did in the previous

exercise we can see that the lower bound on the variance for unbiased estimators of µ is given by
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n and the lower bound on the variance for unbiased estimators of �
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is given by
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The variance of x̄ is given by
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The variance of S
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