
 
 
 
 
 

 

Chapter 1. Probability Theory 

 

Sample space S - All possible outcomes of a particular experiment. 

Event A – Subset of S 

Probability – P(A). ( )  :  R 0,1P A S →  

 

σ - algebra  (Definition 1.2.1) 

A collection of subsets of S, B, that fulfills 

1. B  

2. 
cA B A B    

3. 
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S finite or countable B is all subset of S 

S not countable for instance. S=( ),−  . B is all possible intervals of the type 

(a,b), (a, b], [a, b), [a,b].  (Borel σ - algebraen ) 

 

Probability function (Definition 1.2.4) 

Given S and B, a probability function is a function that satisfies 

1. ( ) 0  P A B    

2. ( ) 1P S =  

3. ( )
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Calculus of probability 

 

1. Addition rule (1.2.9) 

( ) ( ) ( ) ( )P A B P A P B P A B= + −  

 

2. Multiplication rule 

( ) ( ) ( )P A B P A B P B=    (1.3.3) 

 

3. The law of total probability (1.2.11) 
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,  ,  i i j
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S C C C i j


=

= =   . Then 

( ) ( ) ( ) ( )
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 

= =

= =  . 

4. Bayes rule (1.3.5) 
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
 

Independence (1.3.12) 

( ) ( ) ( )P A B P A P B=   

 

 

 



 
 
 
 
 

 

Random variables 

 

X random variable.  :X S R→  (Definition 1.4.1) 

 

Distribution function 

( ) ( ),  xX XF x P X x=    (Definition 1.5.1) 

( ) is discrete if  is a step function XX F x  

( ) is continuous if  is a continuous functionXX F x  

 

Probability mass function (X discrete) 

( ) ( ) ( )( ){ : }X X j jf x P X x P s S X s x= = =  =  

( ) ( )X X

x a

F a P X x


= =  

Support of X: All x for which ( ) 0XP X x=   

 

Probability density function (X continuous) 

( ) ( ) ,  x

x

X XF x f t dt
−

=   

( ) ( )X X

d
f x F x

dx
=  

Support of X: All x for which ( ) 0Xf x   

 



 
 
 
 
 

 

Identical distributed variables (Definition 1.5.8) 

If ( ) ( )P X A P Y A A B =     then X and Y  are identical distributed 

 

 

Chapter 2. Transformations and Expectations 

 

Distributions of Functions of a Random Variable (2.1) 

X is defined on  og ( )Y g X=  is defined on  .  

( ) ( ) ( ) ( )( )1( ) { : ( ) }P Y A P g X A P x g x A P X g A− =  =   =   

( )1 { : ( ) }g A x g x A− =    

( )1 { : ( ) }g y x g x y− =  =  

X discrete 

( ) ( ) ( )
( )1

,  for y .Y

x g y

f y P Y y P X x
−

= = = =   

X continous 

( ) ( ) ( ) ( ) ( )
{ : ( ) }

( ) { : ( )Y X

x g x y

F y P Y y P g X y P x g x y f x dx
 

=  =  =   =    

 

 

 

 



 
 
 
 
 

 

Monotone transformations ( 

g increasing if ( ) ( )u v g u g v    

g decreasing if ( ) ( )u v g u g v    

g increasing or decreasing  g is monotone. 

 

( ) ( )
( )( ) ( )1 1 ,

0,  elles

X

Y Y

d
f g y g y yd

f y F y dy
dy

− −



= = 




 

 

Theorem 2.1.8 

Let X have pdf ( )Xf x ,  let ( )Y g X=  and let   be the sample space. 

Suppose there exist a partition, 0 1, , , kA A A  of   such that 

( )0 0P X A =  and ( )Xf x  is continuous on each iA . Further suppose 

there exist functions ( ) ( )1 , , kg x g x  defined on 1, , kA A , repectively, 

satisfying: 

i. ( )( ) ,  for i ig x g x x A=   

ii. ( )  is monotone on i ig x A  

iii. The set  : ( ) for some i iy y g x x A = =   is the same for each 

1,2, ,i k= , 

iv.  and ( )1

ig y−  has a continuous derivative on  , for each 

1,2, ,i k=  



 
 
 
 
 

 

Then ( )
( )( ) ( )1 1

1

,

0              otherwise
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X i

iY

d
f g y g y y

f y dy

− −

=




= 

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Expected Value (2.2) 

If 
( )

( )

X

x

x f x dx

x P X x



−


 


 =  





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X
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xf x dx
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
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 Definition 2.2.1 

( )
( ) ( )

( ) ( )

X

x

g x f x dx
E g X

g x P X x



−




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=   
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


 

( ) ( )
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= =

 
=    

 
   

 

 

 

 

 



 
 
 
 
 

 

Momentgenerating function (2.3) 

( )
( )

( )

,  X continuous

,  X discrete

tx
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tX

X
tx

x

e f x dx
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( )n n tX

XM t E X e =    
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( )

( )
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 statisticp q
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
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 
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Convergence concepts 

 

Convergence in probability:  

  ( )
1

 if >0, lim P 0
P

i ni n
X X X X 



= →
→  −  =  

 



 
 
 
 
 

 

 

 

Weak law of large numbers 

    ( ) ( )2

1
,  E  and Var . Then lim 1i i i ni n

X iid X X P X   


= →
= =   −  =  

  ( )  ( )
1 1

 then   if  is continuous.
P P

i ii i
X X h X h X h



= =
→ →  

 

Convergence in distribution 

  ( ) ( ) ( )
1

 if  lim  at all  where is continuous.
n

D

i X X Xi n
X X F x F x x F x



= →
→ =  

   
1 1

 
P D

i ii i
X X X X

 

= =
→  →  

 

Central Limit Theorem 

    ( )

( )

2

1

1

,  E  and Var . 

1
Define = . Then  where N 0,1 .
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Slutsky’s Theorem. 

,  ,  then

a) 

)

D P

n n

D

n n

D

n n

X X Y a

X Y aX

b X Y X a

→ →

→

+ → +

 

 

Delta method 

( ) ( ) ( ) ( )( ) ( )( )22 20, 0, '
D D

n nn Y N n g Y g N g     − →  − →  
 

 

( )' 0g  =  

( ) ( ) ( ) ( )( ) ( )
2

2 2

10, ''
2

D D

n nn Y N n g Y g g


     − →  − →    

 

Sufficient statistics 

A statistic ( )T X  is a sufficient statistic for   if the conditional 

distribution of the sample X given the value of ( )T X  does not depend 

on  . 

 

A sufficient statistics for a parameter (-vector)   is a statistic that in a 

certain sense, captures all the information about   in the sample.  



 
 
 
 
 

 

Theorem 6.2.2 

If ( )p x   is the pdf/pmf of X  and ( )q t   is the pdf/pmf of ( )T X , 

then ( )T X  is a sufficient statistics for   if, for every x  in the sample 

space the ratio 
( )
( )( )

p

q T

x

x




is a constant as a function of  . 

 

Theorem 6.2.6 

Let ( )f x  be the joint pdf/pmf for a sample X . ( )T X  is a sufficient 

statistics for   if and only if for all x  and all   . 

                          ( ) ( )( ) ( )f g T h =x X x  

 

Minimal sufficient.  

Definition 6.2.11. A sufficient statistics ( )T X is called a minimal 

sufficient statistics if for any other sufficient statistics ( )'T X , ( )T X  

is a function of ( )'T X . 

 

Theorem 6.2.3 

Let ( )f x  be the joint pdf/pmf for a sample X . Suppose there exists 

a ( )T X  such that for every x  and every y , ( ) ( )/f f x y  is a 

constant as a function of    ( )T X = ( )T Y . Then ( )T X is a minimal 

sufficient statistics for  . 



 
 
 
 
 

 

 

Definition 6.2.21 

Let ( )f t   be a family of pdfs/pmfs for a statistic ( )T X . The family is 

complete if  

( ) 0E g T =     ( )( )0 1P g T = = , for all  . 

 

Completeness and the exponential class 

Let 1, , nX X  be iid. from an exponential family i.e. 

( ) ( )
( ) ( )

1( )

k

i i

i

w t x

f x h x c e


=


=   

Then ( ) ( ) ( ) ( )1 2

1 1 1

, , , ,
n n n

i i k i

i i i

T t X t X t X
= = =

 
=  
 
  X  is complete as long 

as the parameter space contains an open set in nR .  

Minimal sufficient if ( ), 1,2,iw i n =  are not linearly dependent 

Complete if no functional relationship exists between ( ), 1,2,iw i n =  

 

 

 

Invariance principle: 

                 If ̂  is the MLE of  ,  ( )ˆ   is the MLE of ( )  . 

 



 
 
 
 
 

 

Bayes estimation: 

                 Prior: ( )                 Posterior: ( )  x  

                          ( )
( )

( )

( ) ( )

( )

,

,

ff

f f d

  
 

 
= =



xx
x

x x
 

                            ( )ˆ
B E = x  

 

The mean square error 

( )    ( )
22

MSE E W Var W E W  = − = + −
 

 

 

Score statistic 

( ) ( )logS f 



=


X X  

( ) 0E S   = X  

( ) ( ) ( ) ( )
2

2
logVar S I E S E f   

 

   
  = = − = −         

XX X X  

Let ( ) ( )E W  =   X  

 

 

 

 



 
 
 
 
 

 

Cramer-Rao 

( )
( )

( )

2

Var W
I

 




 
 
 

  
X

X  

 

Cramer-Rao iid 

( )
( )

( )

2

X

Var W
nI

 




 
 
 

  X  

Equality 

 If and only if ( ) ( ) ( ) ( )S a W   = −  X X  

 

Cramer-Rao in the multiparameter case 

 

( )1,
t

k =  

Define the Score function  ( )

( )

( )

( )
1

log

log

log
k

f

f

f





 
 
 

= =  
 


 
  



 



x

S X x

x

 

Define the Fisher information ( ) ( )I Cov  =   S X  



 
 
 
 
 

 

We have as in the univariate case that ( )E   =  0S X  and 

( ) ( ) ( )
T

I E  =
 

  S X S X  = ( )E H −  X  where 

( )logij

i j

h f
 

 
=
 

x .  

If ( )W X  is an unbiased estimator for  . Then ( )
1−

   is taken as an 

approximation to ( )Cov   W X  

Let ( ) =   be univariate and let ( )  = 

( )

( )

1

k







 
 
 
 
 


 
  





 

 

Theorem. For an estimator ( )W X with ( )E W =  X , we have under 

similar regularity conditions as in the univariate case that  

( ) ( )( ) ( )( ) ( )( )
-1T

Var W I        X . 

 

 

 

 

 

 



 
 
 
 
 

 

Sufficiency and Unbiasedness 

W unbiased estimator of ( )  .  

T a sufficient statistic ( )E W T    =   and   ,  Var W T Var W       

T complete  E W T    is the unique best unbiased estimator for ( )   

 

                                

          Hypothesis testing. 

 

0 0 1 0:       : CH H    

LRT 

( )
( )

( )

( )

( )
( )( )0 0

sup sup

*
ˆsup

L L

T
L L



 

 
 

 
= = =

x x

x x
x x

 

Reject if ( ) c x . 

 

Power function 

( ) ( )P X R  =   

 

UMP 

( ) ( )'

0 C        



 
 
 
 
 

 

 

Neyman-Pearson 

0 0 1 1:       :  H H   = =  

 

UMP level   test. 

( ) ( )1 0 if  x R f x kf x    

( ) ( )1 0 if  Cx R f x kf x    

0
for some  0 and  = ( )k P X R   

 

Interval Estimator 

( ) ( ),L U  X X  

 

Interval Estimate 

( ) ( ),L U  x x  

 

Coverage Probability 

( ) ( )( ),P L U   X X  



 
 
 
 
 

 

 

 

 

Credible sets. 

( ) ( )
A

P A d    = x x  

 

 



 
 
 
 
 

 

An example 

( ) ( )1

1

 iid Poisson Poisson
n

n i

i

X , X Y X n 
=

 =  

( ) ( )gamma ,   =  

1

gamma
1

n

i

i

x y y,
n


  

=

   
= = +   

+  
  which gives the 1 −

credibility interval  

( )
( )( )

( )
( )( )

1
2 2

2 2 1
2 1 2 1

P y y
n n

 

 
     

 −

 
+   + = −  + + 

 

Which can be compared to the 1 −  confidence interval.  

( ) ( )( )
1

2 2

1 1
2 2 1 1

2 2
P y y

n n
    

−

 
  + = − 

 
 

 

                 

 

 

                 

 

 

 



 
 
 
 
 

 

Asymptotics 

 

Consistent estimator  

( )1  
P

n
ˆ X , X ,  →  . 

 

Efficient estimator 

( ) unbiased, Var  attains its lower boundˆ ˆ  . 

 

Asymptotic efficient estimator 

( )( ) ( )( ) ( )
( )

( )

2

2
0  

'
D

nn W N ,v , v
d

E log f X
d

 
   




− → =
  
  
   

 

Asymptotic efficient and consistent MLE 

1  iid,  MLE  and
P

n n n
ˆ ˆX , ,X    →  

( ) ( )( ) ( )( )0
D

n
ˆn N ,v    − →  

 

Asymptotics of LRT 

( ) ( )12 1
D

nlog X , ,X − →   


