Chapter 1. Probability Theory

Sample space S - All possible outcomes of a particular experiment.

Event A — Subset of S

Probability — P(A). P(A):S —RN[0,1]

o - algebra (Definition 1.2.1)

A collection of subsets of S, B, that fulfills
1. peB
2. AcB=>AeB

3. A&’Az’---EB:DA eB

S finite or countable = B is all subset of S

S not countable for instance. S=(—oo, oo)_ B is all possible intervals of the type

(a,b), (a, b, [a, b), [a,b]. (Borel o -algebraen)

Probability function (Definition 1.2.4)
Given S and B, a probability function is a function that satisfies

1. P(A)>0V AeB
2. P(S)=1

P[0 Eew)



Calculus of probability

1. Addition rule (1.2.9)
P(AU B) = P(A)+ P(B)— P(Aﬂ B)

2. Multiplication rule

P(ANB)=P(A|B)-P(B) (1.3.3)

3. The law of total probability (1.2.11)

S=|JC., C,NC,=¢, Vi j.Then
i=1

P(A):iP(AﬂCi)=iP(A|Ci)P(Ci).

i=1 i=1

4. Bayes rule (1.3.5)

P(C/|A) = P(CNA) _ P(AC;)P(C)

P(A) 5 P(Alc,)P(c)
j=1
Independence (1.3.12)

P(Aﬂ B): P(A)-P(B)



Random variables

X random variable. X :S — R (Definition 1.4.1)

Distribution function

Fy (X) =P, (X <x), ¥x (Definition 1.5.1)
X is discrete if F, (x) is a step function

X is continuous if F, (x) is a continuous function

Probability mass function (X discrete)
fo (X)=P (X =x)= P({sj €S: X(sj):x})

R (2)= 2P (X =

X<a

Support of X: All x for which P, (X =x)>0

Probability density function (X continuous)

F(x)= [ 1 (e, ¥x

d

fy (X) :&FX (x)

Support of X: All x for which f, (x)>0



Identical distributed variables (Definition 1.5.8)

If P(X S A) = P(Y e A)‘v’Ae B then X and Y are identical distributed

Chapter 2. Transformations and Expectations

Distributions of Functions of a Random Variable (2.1)

Xis defined onX og Y = g(X) is defined on Y.
P(YeA)=P(g(X)e A)=P({xeX:g(x)e A})=P(X eg(A))
g (A)={xeX:g(x) e A}

g7 (y)={xeX:g(x) =y}

X discrete

f(y)=P(Y =Y)

Z P(X =x), foryel.
xeg(y)

X continous

F(y)=P(Y<y)=P(g(X)<y)=P({xeX:g(X)<y)= f f, (x)dx

{xeX:g(x)<y}



Monotone transformations (
g increasing if u>v=g(u) > g(v)
g decreasingif u>v=g(u) < g(v)

g increasing or decreasing <> g is monotone.

0, elles

Theorem 2.1.8

Let X have pdf f, (X), let Y =g(X) and let y be the sample space.
Suppose there exist a partition, A,, A ,..., A, of y such that
P(X e A))=0and f,(x) is continuous on each A. Further suppose
there exist functions g, (x),...,d,(x) defined on A,..., A, repectively,
satisfying:
i g(x)=g;(x), forxe A
ii.  g;(x) is monotone on A
iii. Theset Y={y:y=g(x) forsomexe A} is the same for each
1=12,...,k,
iv. and gi‘l(y) has a continuous derivative on Y, for each
1=12,...,K



yeY

Then f, (y){zkl‘l T (gi‘l(y)) diyg_l(y)

0 otherwise

Expected Value (2.2)

If 4 _J;|X|fx ()< then E[X] = _[o i (x)de <0
LZX:|X|P(X =X)<OO \ZX:XP(X =X)<oo
Definition 2.2.1
J () (x)ex
E[g(X)]=4 =
> 6(xP(x =x)




Momentgenerating function (2.3)

f e™f, (x)dx, X continuous

D e"P(X =x), X discrete



Overview of some natural occurring distributions

Independent trials
Register: A/A°
P(4)=p

Events in disjoint timeintervals are
independent
P(One event in At) = At +o(At)

P(More than one event in At) = o(At)

X=number of times A occurs in n trials

P(X =x) :(ZJp"(l—p)"“,x: 01,....n

X=number of times A occur in [0,t]

j, X -t
p(x=x)=Z " oia

x!

X=number of trials until A occurs for the first
time
P(X =x) :(l—p)r_l p,x=12,...

X= time until A occurs for the first time

() ={ o

0, otherwise

X=number of trials until A occurs for the r-th
time

P(X:x):[

x—1

r_

Jp" (1 —p)"‘_"  X=rr+l...

X=time until A occurs the r-th time
—x’

fir(x)=11(r)

0, otherwise

e x>0




Gamma distribution

fy(x)= X 1) x“7 e_%, x>0, a>0, £>0.
(aaﬂ) =cX ~ F(a CIB)
E[ i| F(O!'Fl/l) n>-a




Beta distribution

Ca+p) ..

f(x|a,,8):r(a)r(ﬁ)x (l—x)ﬂ_l, O<x<l, >0, >0

1 D(a+n)T(a+p)
X = )

n>-o




Exponential Class of distributions

Location — Scale Families
£ (x) pdf. The family of pdfs: 1 f[ —
o

H e (—O0,00), c>0

The distribution of Y = u+ocX

Chebyshevs
g(x)=0, r>0

Eg(X)

r

P(g(X)zr)S




Bivariate transformations

Monotone

U=g1(X,Y) thl(U,V)
j—

V=g2(X,Y) Yzhz(U,V)

ny (”av) - fX,Y (hl (u,v),h2 (u’v))|‘]|

Hierarchical Models and Mixture Distributions
X[y ~B(Y,p)

Y|A~ Po(A)

A ~exp(f)

E[X]=E[E[X|V]]

Var[X]=E|Var[ X|Y ]|+ Var| E[ X|Y]]



Week 39
Holders Inequality

1 1

[E[xy]|< Elxy| < (E[x]" ) (E]x]" ), %+$ =1

Jensen’s Inequality
E[g(X)] > g(E[X]), g(x) convex

Chapter 5 Random Sample

Random sample: X,..... X, areiid.

Statistic: 7'(X,.....X,)

Some properties of Statistics

X,.....X, are N(u,c”)

g1 X, and §° _ L ]Z(X, —)?)2 are independent
n-ig n—17;
by 2 _1 AS‘Z
X~N(;:G], U ,) ~ 7 (n-1)
n (o
Y - 0,1
T-statistic: =%, In general 7, = (01
S F 2
T 4 (P)
" P
Var[Tp] __P_



Convergence concepts

Convergence in probability:

{xi};—ix if V>0, lim P(|X, - X|>£)=0

n—oo



Weak law of large numbers

{X;}_,iid, E[X;]=u and Var(X;) = o* <oo. Then lim P(

N—o0

)?n—,u‘<g)=l

P

{Xi}zl—P>X then {h(X;)} . —h(X) if h is continuous.

Convergence in distribution

{Xi};’il—D>X if limF, (x)=F, (x) atall x where F, (x)is continuous.

N—00

Central Limit Theorem

{X;},iid, E[X;]=x and Var(X;) =0’ <.

n _ D
Define Xn:lZXi. Then \/ﬁ(xn ﬂj—)X where X ~ N(0,1).
n4g o



Slutsky’s Theorem.

D P
X, =X, Y —a, then

D
a) XY, —>aX

D
b)X, +Y,—> X +a

Delta method
(4, -6) SN(00%) = (a(%)-0(0) 3N (020 (0)T )

9'(0)=0

0, -0) 5N (0.6%) = \n(a(%,)-0(0) > 5 [0°(0)]

Sufficient statistics

A statistic T (X ) is a sufficient statistic for @ if the conditional
distribution of the sample X given the value of T (X ) does not depend

on 4.

A sufficient statistics for a parameter (-vector) @ is a statistic that in a
certain sense, captures all the information about @ in the sample.



Theorem 6.2.2
If p(x|¢9) is the pdf/pmf of X and q(t|¢9) is the pdf/pmf of T(X ),

then T(X) is a sufficient statistics for @ if, for every X in the sample
P(x[6)

a(T(x)|6)

space the ratio is @ constant as a function of 4.

Theorem 6.2.6

Let f (X|z9) be the joint pdf/pmf for asample X . T (X) is a sufficient

statistics for @ if and only if for all X and all & .

f(x|0):g(T(X|9))h(x)

Minimal sufficient.
Definition 6.2.11. A sufficient statistics T (X ) is called a minimal

sufficient statistics if for any other sufficient statistics T (X ), T(X)
is a function of T (X).

Theorem 6.2.3

Let f (X|6?) be the joint pdf/pmf for a sample X . Suppose there exists
a T(X) such that for every x and every y, f (X|<9)/ f (y|0) is a
constant as a function of @ < T (X )=T(Y).Then T (X )is a minimal

sufficient statistics for 4.



Definition 6.2.21

Let f (t|c9) be a family of pdfs/pmfs for a statistic T(X). The family is

complete if

E,[9(T)|=0=P,(g(T)=0)=1, forall 6.

Completeness and the exponential class

Let X,,..., X, beiid. from an exponential family i.e.

k

f(x|0)= h(x)c(H)e;

Then T(X):(izz:tl(xi),izr]l:tz(xi),...,il:tk(Xi),j is complete as long

as the parameter space contains an open setin R".

w(& )t (x)

Minimal sufficient if W, (9),i =1,2,...n are not linearly dependent

Complete if no functional relationship exists between w, (9),i =12,...n

Invariance principle:

If 6 is the MLE of 0, 7(8) is the MLE of 7(6).



Bayes estimation:

Prior: 77(0) Posterior: 7z(6’|x)

f(x,0) f(x|0)z(0)

7(0]x) = f(x) _If(x,e)de

0, = E(6|x)

The mean square error

2

MSE = E| (W -6)" |=Var[W]+(E[W]-0)

Score statistic

S(X|¢9):%Iog f(X|6)
E[ S(X]0)]=0
Var| S(X|0)|= IX(9):—E[8—2S(X|Q)}:—E{§—;Iog f (x|9)}

Let 7(0)=E[W (X)]



Cramer-Rao

Var[w(x)]z(%'

Cramer-Rao iid

Var[w(x)]z(

Equality
If and only if S(X |0) = a(@)[W (X) —7(9)]

Cramer-Rao in the multiparameter case

0
8—91Iogf(x|0)

Define the Score function S(X|9)= : =Vlog f (x|6)

0
%Iogf(xw)

k

Define the Fisher information 1(8) = COV[S(X |6?)]



We have as in the univariate case that E| S(X @) |=0 and

1(6)=E| S(x|6)S(X[6)" | = ~E[H ()] where

If W (X) is an unbiased estimator for 8. Then 1(0)_1 is taken as an
approximation to COV[W (X ):|

Let 7 =7(8@) be univariate and let Vz(8)=

Theorem. For an estimator W (X )with E[W (X )} — 7, we have under
similar regularity conditions as in the univariate case that

Var[W (X)]=(vz(6)) (1(6))"(V=(8))



Sufficiency and Unbiasedness

W unbiased estimator of 7(8).
T a sufficient statistic E|W|T |=7(0) and Var[W|T |<Var[W], V&

T complete = E[W |T} is the unique best unbiased estimator for 1(0)

Hypothesis testing.

H,:0eQ, H,:0Q;
LRT
Sgl)JOp L(6]x) sgop L(6]x)

:sgpL(6|x): L(éx) :l*(T(X))

A(x)

Reject if A(x)<c.

Power function

,8(9)= P, (X eR)

c

P
p(0)2 5 (6) Vo<



Neyman-Pearson

Hy:0=6, H,:0=6,

UMP level «a test.

xeRif f(x]4)>kf (x|6,)
xeRC if f(x|6,) <kf (x|6,)

forsome k>0 and « =P, (X €R)

Interval Estimator

L)V (X)]

Interval Estimate

(LU (X))

Coverage Probability

P(0e[L(X)U(X)])




Methods of Construction

Inverting a test H,:60=6, H,:0 #0,
4(6,)={x: xR}

C(x)={6,:x< 4(6,)}

Inverting LRT
C(x)={6,: 2(x) =k}

Pivotal Quantity
The distribution of Q(X,60) is independent of 6.

C(x)={0: a, < F,(1]0)<1-a,|

Credible sets.

P(0<Alx)=[x(6|x)do

A




An example

X,,... X, iid Poisson(1) =Y :ixi ~ Poisson(nA)

i=1

7(A)=gamma(«a,p)
7{1 iznl:xi = yj = gamma(a+ y’n,b’ﬂ+1j which gives the 1- «

credibility interval

P(z(ngﬂ)Z(Z(era))lg <A< 2(n§+1))((2(y+a))zj —1-«a

Which can be compared to the 1— « confidence interval.

1 1
P(E;{(Zy)lz <A< %Z(z(yu))gj =1-«



Asymptotics

Consistent estimator

é(xl,...xn)—ie, V.

Efficient estimator

0 unbiased, Var(é) attains its lower bound.

Asymptotic efficient estimator

- £(0) 58 (03(0)) v(0)=—— )

E{(ddelog f(X e)ﬂ

Asymptotic efficient and consistent MLE

" ~ P
X,,....X, iid, 6, MLE = 6, —6 and

D

Jn(z(6,)-7(0))>N(0,v(9))

Asymptotics of LRT

D

—2log A(X,.... X, )= x(1)



