Repetition week 40

Delta method

$$\sqrt{n}(Y_n - \theta) \xrightarrow{D} N(0, \sigma^2) \Rightarrow \sqrt{n}(g(Y_n) - g(\theta)) \xrightarrow{D} N(0, \sigma^2[g'(\theta)]^2)$$
$$g'(\theta) = 0$$
$$\sqrt{n}(Y_n - \theta) \xrightarrow{D} N(0, \sigma^2) \Rightarrow \sqrt{n}(g(Y_n) - g(\theta)) \xrightarrow{D} \frac{\sigma^2}{2} [g''(\theta)]\chi_1^2$$

Sufficient statistics

A statistic T(X) is a sufficient statistic for θ if the conditional distribution of the sample X given the value of T(X) does not depend on θ .

A sufficient statistics for a parameter (-vector) θ is a statistic that in a certain sense, captures all the information about θ in the sample.

Theorem 6.2.2

If $p(x|\theta)$ is the pdf/pmf of X and $q(t|\theta)$ is the pdf/pmf of T(X), then T(X) is a sufficient statistics for θ if, for every x in the sample space the ratio $\frac{p(x|\theta)}{q(T(x)|\theta)}$ is a constant as a function of θ .

Theorem 6.2.6

Let $f(\mathbf{x}|\theta)$ be the joint pdf/pmf for a sample $\mathbf{X} \cdot T(\mathbf{X})$ is a sufficient statistics for θ if and only if there exist a function $g(t|\theta)$ such that for all for all \mathbf{x} and all θ .

$$f(\boldsymbol{x}|\boldsymbol{\theta}) = g(T(\boldsymbol{X}|\boldsymbol{\theta}))h(\boldsymbol{x})$$