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Problem 1 Suppose that X is a continuously distributed random variable with density

f(x) =


0 for x < 0

2x for 0 ≤ x ≤ 1

0 for x > 1.

a) How can X be simulated using the inversion method? Suppose that we wanted to
estimate E(X) using Monte-Carlo integration. Find the exact variance of the Monte-
Carlo estimate of E(X) based on n = 1000 realisations of X.

b) Let U ∼ unif(0, 1). Show that E(
√

U(1− U)) = π/8. Find the exact variance of a
Monte-Carlo estimate of E(X) based on an additional n = 1000 antithetic realisations
of X generated via the inversion method.

Problem 2 Suppose that X is continuously distributed random variable with probability
density function

f(x) =
1√
2πx

e−
1
2
(lnx)2(1 + s sin(2kπ lnx))

for x > 0 where 0 ≤ s ≤ 1 and k ∈ Z are parameters. A graph of f for s = 1/2 and k = 2 is
shown in Fig. 1.

a) What is the name of this distribution and its parameters in the special case of s = 0?

Find an algorithm for simulating realisations of X. If you choose rejection sampling as
a method, find the acceptance rate (that is, the long-run or ‘unconditional’ acceptance
probability).

Problem 3

Suppose that we observe a random sample y1, y2, . . . , yn (see Fig. 2) from a Gamma distribution
with density

f(y) =
λa

Γ(a)
ya−1e−λy

for y > 0 and where a and λ are positive parameters.

Representing our prior beliefs about a and λ with a prior density

π(a, λ) ∝ e−a

λ
,

suppose we want to sample from the posterior distribution of a and λ using Gibbs sampling,
updating a and λ in separate steps.



TMA4300 Computer Intensive Statistical Methods, August 2024 Page 2 of 6

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f(
x)

Figure 1: A graph of f(x) in problem 2 for s = 1/2 and k = 2.

Histogram of y

y

F
re

qu
en

cy

20 40 60 80 100

0
5

10
15

20

Figure 2: Observations y1, y2, . . . , x100 from the density described in problem 3.
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a) Show that the full conditional of λ is a Gamma distribution. Find its parameters.

b) Find the full conditional density of a up to a constant of proportionality. To simulate
from this distribution we may use Metropolis-Hastings within Gibbs. Using a uniform
proposal for the next value a′ of a centered around the current value a with maximal
step size d, that is, Q(a′|a) = 1

2d
I(a − d < a′ < a + d), find the log of the acceptance

probability.

Figs. 3 show trace plots, kernel density estimates of the marginal posteriors of a and λ, and
samples from their joint posterior when running the Gibbs sampler in point a) and b) after
tuning the step size d to an optimal value of d = 0.8 to achieve an acceptance rate of 0.424.

c) Briefly comment on why the convergence of the Markov chain is somewhat slow.

Construct and write an expression (up to a normalizing constant) for the proposal density
Q(a′, λ′ | a, λ) for an alternative Metropolis-Hastings algorithm in which a and λ are
updated in a single block. The joint proposal should involve a random walk proposal for
a of the same form as in point b) but should also exploit the fact that the full conditional
of λ is known explicitly.

How would you expect the optimal step size d and the rate of convergence of the result-
ing Markov chain to change when using the single-block sampler as compared to using
separate Gibbs steps for a and λ? Explain why.

Problem 4

Let (X1, X2, . . . , X10) be an iid sample of size n = 10 from the exponential distribution with
cumulative distribution function F (x) = 1− e−λx. The MLE of λ is then given by

λ̂ =
n∑n

i=1Xi

.

Suppose we obtain an estimate λ̂ = 2.0 based on an observed sample x = (x1, x2, . . . , x10)

As a toy problem, suppose we want to examine the bias of λ̂ by bootstrapping and to this
end we simulate B = 1000 parametric bootstrap samples x1∗,x2∗, . . . ,xB∗ from F (λ̂). Let
λ̂1∗, λ̂2∗, . . . , λ̂B∗ denote the corresponding bootstrap replicates of λ̂ and suppose that the ob-
served value of 1

B

∑B
b=1 λ̂

b∗ = 2.24.

a) Compute an estimate of the bias of λ̂, that is, E(λ̂) − λ, from the information given
above. Given the same information, compute a bias corrected estimate of λ.
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Figure 3: Trace plots and kernel density estimates of the marginal posteriors of a and λ when running
the Gibbs sampler in problem 3a-b for 1000 iterations for the data shown in Fig. 2.
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Figure 4: Samples from the joint posterior of a and λ based on the same Gibbs sampling run shown
in Fig. 3.

Show that the bias corrected estimator λ̂c can be expressed explicitly in terms of λ̂ and
the bootstrap replicates λ̂1∗, λ̂2∗, . . . , λ̂B∗ as

λ̂c = 2λ̂− 1

B

B∑
b=1

λ̂b∗.

b) The expected value of λ̂ is known analytically to be E(λ̂) = n
n−1

λ. Use this to find the

conditional expectations E(λ̂b∗ | λ̂) and E(λ̂c | λ̂). Also, find E(λ̂c). Hint: You may need
to use the law of total expectation. Is the bias-corrected estimator λ̂c unbiased? If not,
by which percentage does λ̂c over- or underestimate λ for n = 10? How does the bias of
λ̂c compare to that of λ̂?

Problem 5

Suppose that we sample n individuals randomly from a population consisting of three genotypes
AA, Aa and aa. Assuming that the population is in so called Hardy-Weinberg equilibrium, the
proportions of the three genotypes in the population are p2, 2p(1−p) and (1−p)2, respectively,
where 0 < p < 1 is an unknown parameter. Assuming also that the population is large, the
number of each genotype in the sample, ZAA, ZAa, Zaa will be approximately multinomially
distributed.
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a) Show that the log likelihood can be written as

l(p;ZAA, ZAa, Zaa) = lnn!− lnZAA!− lnZAa!− lnZaa! + ZAa ln 2

+ (2ZAA + ZAa) ln p+ (ZAa + 2Zaa) ln(1− p)

In the following suppose that we are unable to distinguish individuals of genotypes AA and Aa
because allele A is dominant, that is, we only observe XA− = ZAA + ZAa and Xaa = Zaa. We
would like to fit the model using the EM-algorithm. Let p(t) denote the value of the parameter
p at the tth iteration of the algorithm.

b) Find

Z∗
AA = E(ZAA|XA−, Xaa, p(t)),

Z∗
Aa = E(ZAa|XA−, Xaa, p(t)),

Z∗
aa = E(Zaa|XA−, Xaa, p(t)),

that is, conditional expectations given the observed data and given that the parameter
p is equal to p(t).

Next, express
Q(p|p(t)) = E(l(p;ZAA, ZAa, Zaa)|XA−, Xaa, p(t))

in terms of Z∗
AA, Z

∗
Aa, Z

∗
aa up to a constant that does not depend of p.

Finally, find
p(t+1) = argmax

p
Q(p|p(t)).


