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Problem 1

a) It follows that X has cdf F (x) =
∫ x

0
2tdt = x2. Hence, X can be simulated by setting

X = F−1(U) =
√
U where U ∼ unif(0, 1).

The expected value of X can be estimated by

ÊX =
1

n

n∑
i=1

xi

where x1, x2, . . . , xn are simulated realizations of X. This Monte-Carlo estimator has
variance

Var(ÊX) =
1

n
VarX = 1/18000 ≈ 0.0001667

since EX = E
√
U =

∫ 1

0
u1/2du = 2/3, E(X2) = EU = 1/2 so that VarX = 1/2 −

(2/3)2 = 1/18.

b) Antithetic realizations X∗ can be simulated by setting X∗ =
√
1− U .

We then have

E(XX∗) = E(
√

U(1− U))

=

∫ 1

0

u(1− u)du

=

∫ 1

0

√
−(u2 − u+ 1/4) + 1/4

=

∫ 1

0

√
1/4− (u− 1/2)2

=
π

8

since the last integral is the area of a half disk with radius 1/2 located at (1/2, 1).

Hence,

corr(X,X∗) =
E(XX∗)− (EX)2

VarX
=

π/8− 4/9

1/6
≈ −0.9314165

It follows that the improved estimator

ÊX =
1

2n
(

n∑
i=1

Xi +
n∑

i=1

X∗
i )

has variance

Var ÊX =
1

n
Var(X)(1 + ρ) = 3.8101928× 10−6

that is, the variance is reduced by a factor of 1 + ρ = 0.069 when using antithetic
sampling.
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Problem 2

a) When s = 0,

f(x) =
1√
2πx

e−(lnx)2/2

which is the density of the standard lognormal distribution.

Alternative 1: A possible method for simulating X is rejection sampling using

g(x) =
1√
2πx

e−(lnx)2/2

as proposal and accepting a sample X = x with probability

f(x)

cg(x)
=

1 + s sin(2kπ lnx)

c
≤ 1

To ensure that this probability is at most 1 for all x, we must have c ≥ 1+s, the optimal
value being c = 1 + s. Thus the acceptance probability becomes

1 + s sin(2kπ lnx)

1 + s
.

The acceptance rate becomes

E
f(X)

cg(X)
=

∫ ∞

0

f(x)

cg(x)
g(x)dx =

1

c

∫ ∞

0

f(x)dx =
1

c
=

1

1 + s

which can thus be as low as 50% when s = 1.

Algorithm 1 Alternative method for simulating from f(x) in problem 2.

Generate x ∼ g
Generate u ∼ unif(0, 1)
α← min(1, 1 + s sin(2kπ lnx))
if u < α then

y ← x
else

y ← 1/x
end if
Return y
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Figure 1: Illustration of algorithm 1 based on moving some of the mass of the proposal (blue areas)
to a different locations (yellow areas). Note that the graph shows the densities of log-transformed
values.

Alternative 2: Instead of rejecting samples an alternative idea is to instead move
some of the probability mass of a lognormal proposal to new locations based on the
factor 1 + s sin(2πk lnx) and thus avoid rejecting any samples (see Algorithm 1 and
Fig. 1).

To prove that this works, let I be an indicator variable for the event that we accept
the proposed value by setting Y = X, the complement of this event being that we set
Y = 1/X. Conditional on X = x, I is thus Bernoulli with parameter (‘acceptance
probability’)

α(x) = min(1, 1 + s sin(2kπ lnx))

= 1 + min(0, s sin(2kπ lnx)).

Using the product rule for densities, the joint density of X and I is thus

fX,I(x, i) = fX(x)fI|X=x(i) =
1√
2πx

e−
1
2
(lnx)2α(x)i(1− α(x))1−i.

The joint density of Y and I follows by applying the transformation formula for densities
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for the transformation Y = 1/X when I = 0 giving

fY,I(y, i) =

{
fX,I(y, 1) for i = 1

fX,I(1/y, 1)
∣∣∣dxdy ∣∣∣ for i = 0

=

{
1√
2πy

e−
1
2
(ln y)2α(y) for i = 0

1√
2π(1/y)

e−
1
2
(ln(1/y))2 1

y2
(1− α(1/y)) for i = 0.

Hence, using the law of total probability, the marginal density of Y is

fY (y) =
1∑

i=0

fY,I(y, i)

= fY,I(y, 1) + fY,I(y, 0)

=
1√
2πy

e−(ln y)2/2(α(y) + 1− α(1/y))

The factor in the parenthesis can be simplified by noting that sin is an odd function and
using properties of the min and max functions which yields

α(y) + 1− α(1/y) = 1 + min(0, s sin(2kπ ln y))−min(0, s sin(2kπ ln(1/y))))

= 1 + min(0, s sin(2kπ ln y))−min(0, s sin(−2kπ ln y)))

= 1 + min(0, s sin(2kπ ln y))−min(0,−s sin(2kπ ln y)))

= 1 + min(0, s sin(2kπ ln y)) + max(0, s sin(2kπ ln y)))

= 1 + s sin(2kπ ln y).

This completes the proof.

As an aside, the distribution considered in this problem is a standard counterexample to
the claim that a distribution is fully determined by its moments, as all the moments of
f(x) can be shown to be independent of s and k (Exercise 6.21 in Kendall’s Advanced
Theory of Statistics (Stuart & Ord, 5th edition)).

Problem 3
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a) The joint posterior

π(λ, a | y) ∝ π(a, λ)
n∏

i=1

π(yi | λ, a)

=
e−a

λ
I(λ > 0, a > 0)

n∏
i=1

λa

Γ(a)
ya−1
i e−λyi

= λna−1Γ(a)−n(
n∏

i=1

yi)
ae−a−λ

∑n
i=1 yiI(λ > 0, a > 0)

and the full conditional of λ is thus

π(λ | a,y) ∝ λna−1e−λ
∑n

i=1 yiI(λ > 0)

which (up to a normalizing constant) is the pdf of a Gamma distribution with shape
parameter na and rate parameter

∑n
i=1 yi.

b) Similarly, the full conditional of a is

π(a | λ,y) ∝ (λne−1

n∏
i=1

yi)
aΓ(a)−nI(a > 0)

which is not the density of any familiar distribution. Using Q(a′|a) = 1
2d
I(a− d < a′ <

a+ d) as proposal, the log of the acceptance probability of a Metropolis-Hastings within
Gibbs step becomes

lnα = lnmin(1,
π(a′ | λ,y)Q(a|a′)
π(a | λ,y)Q(a′|a)

)

= min(0, ln
(λne−1

∏n
i=1 yi)

a′Γ(a′)−nI(a′ > 0)

(λne−1
∏n

i=1 yi)
aΓ(a)−nI(a > 0)

)

= min(0, (a′ − a)(n lnλ− 1−
n∑

i=1

ln yi)− n(ln Γ(a′)− ln Γ(a)) + ln I(a′ > 0)).

While ln I(a′ > 0)) in the above expression is undefined for non-positive proposals a′, a
corresponding R expression would produce a log acceptance probability evaluating to

log(aprime > 0)

## [1] -Inf

and thus a correct acceptance probability of zero since
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exp(-Inf)

## [1] 0

thus ensuring that the parameters stay inside the support of the posterior distribution.

c) We see that a and λ have a strong posterior correlation and the change in each parameter
when updating these in separate Gibbs step will therefore be small leading to a slow rate
of convergence.

A joint proposalQ(a′, λ′|a, λ) can be constructed by using a similar random walk proposal
for a (but with a different d) combined with a proposal λ′ according to its full conditional,
conditional on the proposed value a′ of a. From the product rule for densities we find
that the joint proposal density then is

Q(a′, λ′|a, λ) ∝ 1

2d
I(a− d < a′ < a+ d)

(
∑n

i=1 yi)
na′

Γ(na′)
(λ′)na

′−1e−λ′ ∑n
i=1 yiI(λ′ > 0)

This single-block proposal has the advantage that we can increase the step size d while
still maintaining a reasonable high acceptance rate since the proposal matches the target
density π(a, λ|y) to a much larger extent. After tuning the step size d we can thus expect
a much higher rate of convergence.

Problem 4

a) The bootstrap estimate of Eλ̂ is given by 1
B

∑B
b=1 λ̂

b∗ = 2.24 and the bootstrap estimate

of the bias Eλ̂− λ is similarly given by 1
B

∑B
b=1 λ̂

b∗ − λ̂ = 2.24− 2.0 = 0.24.

Subtracting the estimated bias from the original estimate λ̂ we obtain a bias corrected
estimate of 2.0− 0.24 = 1.76.

The biases corrected estimator can be expressed as

λ̂c = λ̂− B̂ias(λ̂) = λ̂− (
1

B

B∑
b=1

λ̂b∗ − λ̂) = 2λ̂− 1

B

B∑
b=1

λ̂b∗.

b) Since we know that E(λ̂) = n
n−1

λ, the plug-in principle implies that the same hold

analogously for for the bootstrapped model, that is, each bootstrap replicate of λ̂ has
conditional expected value E(λ̂b∗ | λ̂) = n

n−1
λ̂.
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Hence,

E(λ̂c | λ̂) = E
(
2λ̂− 1

B

B∑
b=1

λ̂b∗ | λ̂
)

= 2λ̂− 1

B

B∑
b=1

E(λ̂b∗ | λ̂)

= 2λ̂− n

n− 1
λ̂

=
2n− 2− n

n− 1
λ̂

=
n− 2

n− 1
λ̂.

Using the law of total expectation

Eλ̂c = EE(λ̂c|λ̂)

= E

(
n− 2

n− 1
λ̂

)
=

n− 2

n− 1
Eλ̂

=
n− 2

n− 1
· n

n− 1
λ

=
n(n− 2)

(n− 1)2
λ.

The bias corrected estimator λ̂c is thus still biased. However, for n = 10, n(n−2)
(n−1)2

=

0.988 so λ̂c underestimates λ by only about 1.2%. In comparison, the original estimator
overestimates λ by a factor of n

n−1
= 1.11 or about 11%.

Problem 5

a) Since the counts have a multinomial distribution, the likelihood is

L(p;ZAA, ZAa, Zaa) =
n!

ZAA!ZAa!Zaa!
(p2)ZAA(2p(1− p))ZAa((1− p)2)Zaa (1)

=
n!

ZAA!ZAa!Zaa!
2ZAap2ZAA+ZAa(1− p)ZAa+2Zaa (2)

Taking the log the result follows.
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b) Conditional on XA−, Xaa, p(t), ZAA has a binomial distribution with parameters XA− and
p2(t)/(p

2
(t) + 2p(t)(1− p(t))). Thus

Z∗
AA = E(ZAA|XA−, Xaa, p

(t))

= XA−
p2(t)

p2(t) + 2p(t)(1− p(t))
,

Z∗
Aa = XA−

(
1−

p2(t)
p2(t) + 2p(t)(1− p(t))

)
Since Zaa = Xaa,

Z∗
aa = Xaa.

Taking conditional expectation of the log likelihood in point a) we find that

Q(p|p(t)) = C + (2Z∗
AA + Z∗

Aa) ln p+ (2Z∗
aa + Z∗

Aa) ln(1− p)

where C is a constant that depends on p(t) but not p.

Maximizing Q w.r.t. p, we find that that

p(t+1) =
2Z∗

AA + Z∗
Aa

2Z∗
AA + 2Z∗

aa + 2Z∗
AA

=
2Z∗

AA + Z∗
Aa

2n


