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Problem 1

Suppose X has a hypoexponential distribution with probability density function

f(x) =

{
2e−x(1− e−x) for x ≥ 0

0 for x < 0.

a) Find a method for simulating X via rejection sampling using the proposal density g(x) =
e−x for x ≥ 0. Derive the overall acceptance rate of the algorithm.

b) Find F (x) = P (X ≤ x) and its inverse F−1. Based on this, specify another algorithm for
simulating X (without using rejection sampling). Hint: You will encounter an equation
that is quadratic in e−x.

c) Suppose that V and W are independent exponentially distributed with rate parameters
1 and 2 respectively. Let X = V + W and let Y be another suitably chosen function
of V,W . Derive the joint density of X, Y (including its support) and use this to show
that the marginal density of X is the above density f(x). Based on this, provide a third
method for simulating X.

Problem 2 Suppose that X has density proportional to

f ∗(x) =

{
xa−1e−bx+c

√
x for x ≥ 0

0 for x < 0,

where the parameters a > 1/2, b > 0 and −∞ < c < ∞.

a) Is this density always log-concave? If not, find a suitable tranformation of the form Y =
w(X) such that the density of Y becomes log-concave. Hint: A power transformation
of the form Y = Xp may perhaps do the trick. Name an efficient method of simulation
that is particularly suitable for simulating random variables with densities that are log-
concave and briefly explain the main ideas behind the method.

Problem 3

Suppose that we have observations (yi, xi) from a linear regression model such that

yi ∼ N(α + βxi, 1/τ)
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for i = 1, 2, . . . , n and that we use a non-informative improper prior density on the parameters
given by

π(α, β, τ) ∝ 1

τ
e
− (ln τ−µ0)

2

2σ2
0 I(τ > 0),

that is, we use flat priors on the regression coefficents and a log-normal prior on the precision
parameter τ .

a) Write down the joint density of y1, y2, . . . , yn, α, β, τ up to a normalising constant.

b) Find the full conditional of β, that is, the conditional distribution of β conditional
y1, y2, . . . , yn, α, τ . Hint: You will need to complete a square in β.

c) Similarly, find the full conditional of τ . Assuming that the log-normal prior on the
precision τ is vague (σ2

0 large), suggest a suitable proposal density Q(τ ′|τ). Derive the
resulting log acceptance probability.

Problem 4 Suppose that we observe and iid sample x1, x2, . . . , xn from the density

fX(x) = (1− p)
1√
2πσ0

e
− x2

2σ2
0 + p

1√
2πσ1

e
− x2

2σ2
1 ,

where 0 < p < 1, σ2
0 > 0 and σ2

1 > 0 are unknown parameters. We will consider an expectation-
maximisation (EM) algorithm for computing the maximum likelihood estimates of these un-
known parameters.

a) Show that the distribution of each xi can be seen as a finite mixture by introducing latent
variables zi ∼ Bernoulli(p), i = 1, 2, . . . , n and by a suitable choice of fX|Z(xi|zi).
Assuming that we observed z1, z2, . . . , zn in addition to x1, x2, . . . , xn, show that the
resulting “complete data” log-likelihood can be written as

ln f(x, z; p, σ2
0, σ

2
1) =

n∑
i=1

(
−1

2
ln(2π)− 1

2
ln(σ2

zi
)− x2

i

2σ2
zi

+ zi ln(p) + (1− zi) ln(1− p)

)
.

b) What is the distribution of each zi conditional on the observed data x and current
values of the parameters at the tth iteration of the algorithm? In particular, derive the
conditional probabilities

w
(t)
i = P (zi = 1|x, σ(t)

0 , σ
(t)
1 , p(t)).

To complete the E-step of the algorithm, find a closed-form expression for the function
Q defined by

Q(σ2
0, σ

2
1, p|σ

(t)
0 , σ

(t)
1 , p(t)) = E(ln f(x, z; p, σ2

0, σ
2
1)|x, σ

(t)
0 , σ

(t)
1 , p(t)).
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c) Derive the details of the M-step of the algorithm.


