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Problem 1

a) Using g(x) = e−x as proposal,

f(x)

cg(x)
= 2(1− e−x)/c ≤ 1

for all x ≥ 0 implies that we must have c ≥ 2, with c = 2 being the optimal choice.

repeat
Generate x ∼ g
Generate u ∼ unif(0, 1)

until u < 1− e−x

return x

In this case and in general, the overall acceptance rate is

EP (U <
f(X)

cg(X)
|X) =

∫
f(x)

cg(x)
g(x)dx =

1

c
= 1/2.

b) The cdf of X is

F (x) =

∫ x

0

2e−t − 2e−2tdt =
[
−2e−t + e−2t

]x
0
= e−2x − 2e−x + 1

Equating this to u gives

u = F (x) = e−2x − 2e−1 + 1 = (1− e−x)2

which solved for x gives
x = F−1(u) = − ln(1−

√
u).

We can thus generate X using the algorithm

Generate u ∼ unif(0, 1)
x← − ln(1−

√
u)

return x.

c) If V ∼ Exp(1) and W ∼ Exp(2), the joint density of X = V +W and Y = W becomes

fX,Y (x, y) = fV,W (v, w)

∣∣∣∣∂(v, w)∂(x, y)

∣∣∣∣
= 2e−v−2w · 1
= 2e−(v+w)−w

= 2e−x−y
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for y > 0 and x > y implying that the marginal density of X is

fX(x) =

∫ x

0

fX,Y (x, y)dy = 2e−x

∫ x

0

e−ydy = 2e−x(1− e−x)

equal to f(x) given in the problem statement.

We can thus generate X also using the algorithm

Generate v ∼ exp(1)
Generate w ∼ exp(2)
x← v + w
return x.

Problem 2

a) Since both lnx and
√
x are concave functions we see that

ln f ∗(x) = (a− 1) lnx− bx+ c
√
x

is convex or linear at least when both c ≤ 0 and a ≤ 1. It is thus not always log-concave.
The transformed variable Y =

√
X, however, has (unnormalised) density

f ∗
Y (y) = f ∗(x)

∣∣∣∣dxdy
∣∣∣∣

= (y2)a−1e−by2+cy2y

∝ y2a−1e−by2+cy

and log-density
ln f ∗

Y (y) = (2a− 1) ln y − by2 + cy

which is concave since −by2 is concave given that b is strictly positive, (2a − 1) ln y is
always concave since a is strictly larger than 1/2, and cy is linear.

An efficient method for generating Y is therefore adaptive rejection sampling. Briefly,
this is a form of rejection sampling where we use a piecewise log-linear proposal density
g(y) (a mixture of truncated exponential distributions) such that cg(y) envelopes the
target density f ∗(y). This proposal is adaptively refined by adding futher subdivisions
each time a proposed sample is rejected. In this particular case, since Y has a lower
bound of zero, a single exponential distribution can be used as the initial proposal.
Having simulated Y , X can be generated by the inverse transformation X = Y 2.
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Problem 3

a) The joint density of all random variables in the model is

f(τ, α, β,y) ∝ I(τ > 0)
1

τ
e
− (ln τ−µ0)

2

2σ2
0

n∏
i=1

√
τ

2π
e−

1
2
τ(yi−α−βxi)

2

∝ I(τ > 0)
1

τ
e
− (ln τ−µ0)

2

2σ2
0 τn/2e−

τ
2

∑n
i=1(yi−α−βxi)

2

b) Using the fact
π(β|α, τ,y) ∝ f(τ, α, β,y)

it is clear that the full conditional of β is a Guassian density since the full conditional is
proportional to the exponential function of a quadratic in β. Completing the square in
β, we find that

n∑
i=1

(yi − α− βxi)
2 = β2

n∑
i=1

x2
i − 2β

n∑
i=1

xi(yi − α) +
n∑

i=1

(yi − α)2 (1)

=

(
n∑

i=1

x2
i

)(
β −

∑n
i=1 xi(yi − α)∑n

i=1 x
2
i

)2

+ C (2)

where C is a constant not involving β. Thus the full conditional of β is a Gaussian
density with mean ∑n

i=1 xi(yi − α)∑n
i=1 x

2
i

and variance (
τ

n∑
i=1

x2
i

)−1

c) Similarly, the full conditional of τ simplifies to

π(τ |α, β,y) ∝ I(τ > 0)
1

τ
e
− (ln τ−µ0)

2

2σ2
0 τn/2e−

τ
2

∑n
i=1(yi−α−βxi)

2

Assuming that the part coming from the likelihood dominates the part coming from
the log-normal prior, a good choice of proposal in a Metropolis-within-Gibbs step is the
density

Q(τ ′|τ, α, β,y) ∝ τ ′
n/2

e−
τ ′
2

∑n
i=1(yi−α−βxi)

2
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that is, a Gamma distribution with shape parameter n/2+1 and rate parameter 1
2

∑n
i=1(yi−

α− βxi)
2. This leads to

π(τ ′| . . . )Q(τ |τ ′, . . . )
π(τ | . . . )Q(τ ′|τ, . . . )

=
τ

τ ′
e
− (ln τ ′−µ0)

2−(ln τ−µ0)
2

2σ2
0

and a log acceptance probability of

logα = min

(
0, ln τ − ln τ ′ − (ln τ ′ − µ0)

2 − (ln τ − µ0)
2

2σ2
0

)
Problem 4

a) If we assume thatX|Z = z ∼ N(0, σ2
z) and Z ∼ Bernoulli(p) so that fZ(z) = pz(1−p)1−z,

then by the law of total probability, the marginal density of X is

fX(x) =
1∑

z=0

fX |Z(x|z)fZ(z) = (1− p)
1√
2πσ0

e
− x2i

2σ2
0 + p

1√
2πσ1

e
− x2i

2σ2
1

If we observed both x and z, the likelihood would be

f(x, z; p, σ2
0, σ

2
1) =

n∏
i=1

fX,Z(xi, zi)

=
n∏

i=1

fX|Z(xi|zi)fZ(zi)

=
n∏

i=1

1√
2πσzi

exp

{
− x2

i

2σ2
zi

}
pzi(1− p)1−zi

and the log-likelihood, omitting unnecessary constants,

ln f(x, z; p, σ2
0, σ

2
1) =

n∑
i=1

(
−1

2
ln(σ2

zi
)− x2

i

2σ2
zi

+ zi ln(p) + (1− zi) ln(1− p)

)
b) Conditional on x and current parameter values, each zi is Bernoulli distributed. Using

Bayes theorem,

w
(t)
i = P (zi = 1|x, σ(t)

0 , σ
(t)
1 , p(t))

=
fX|Z(xi|1)fZ(1)∑1
z=0 fX|Z(xi|z)fZ(z)

=
p(t) 1

σ
(t)
1

e
− x2i

2σ
2(t)
1

p(t) 1

σ
(t)
1

e
−

x2
i

2σ
2(t)
1 + (1− p(t)) 1

σ
(t)
0

e
−

x2
i

2σ
2(t)
0



TMA4300 Computer Intensive Statistical Methods, August 2025 Page 5 of 5

Taking conditional expectation of the complete data log likelihood

Q(σ2
0, σ

2
1, p|σ

(t)
0 , σ

(t)
1 , p(t))

=E(ln f(x, z; p, σ2
0, σ

2
1)|x, σ

(t)
0 , σ

(t)
1 , p(t))

=
n∑

i=1

(
w

(t)
i

(
− 1

2
ln(σ2

1)−
x2
i

2σ2
1

+ ln(p)
)
+ (1− w

(t)
i )
(
− 1

2
ln(σ2

1)−
x2
i

2σ2
1

+ ln(1− p)
))

c) At its maximum ∂Q/∂p = 0, ∂Q/∂(σ2
0) = 0, ∂Q/∂(σ2

1) = 0 which after some algebra
yields

p(t+1) =
1

n

n∑
i=1

w
(t)
i , σ

2(t+1)
1 =

∑n
i=1w

(t)
i x2

i∑n
i=1 w

(t)
i

, σ
2(t+1)
0 =

∑n
i=1(1− w

(t)
i )x2

i∑n
i=1(1− w

(t)
i )


