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Oppgave 1

Let x ∼ N(0, 1) and y|x ∼ Poisson(ex). In the (marginal) distribution for y we want to find
the parameter

θ = E[
√

y].

We assume we have available functions that generates independent realisations from the stan-
dard normal and Poisson distributions.

Write pseudo code and equations necessary to calculate the value of an estimator for θ, θ̂, by
Monte Carlo simulation.

Using x as a control variate it is possible to define an estimator for θ, θ̃, with smaller variance
than θ̂. Define θ̃ and write pseudo code and equations necessary to calculate the value of the
new estimator θ̃.
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Figur 1: Observed data in Exercises 2 and 3.

Oppgave 2

Figure 1 shows an observed data set, {(xi, yi)}n

i=1.

In this exercise we consider a regression analysis and use a Bayesian model. We assume a
regression model with three parameters, α ∈ R, β ∈ R and λ > 0, where

E[yi|α, β, λ] = α + β(xi − x̄),

with x̄ = (1/n)
∑

n

i=1 xi. We assume the yi’s to be independent (given the parameters α, β
and λ), and to get a robust analysis we assume yi to have a double exponential distribution
(Laplace distribution) with mean α + β(xi − x̄) and intensity λ, i.e.

π(yi|α, β, λ) =
λ

2
exp {−λ|yi − (α + β(xi − x̄))|} .

We assume α, β and λ to be apriori independent. For α and β we assume prior distributions

α ∼ N(0, 102) and β ∼ N(0, 102),

respectively, and for λ we assume the prior distribution

π(λ) =
λ

4
exp

{
−λ

2

}
for λ > 0.

a) Visualise the Bayesian model as a graphical model.

Show that the full conditional distribution for λ can be expressed as

π(λ|α, β, y1, . . . , yn) ∝ λn+1 exp

{
−λ

(
1

2
+ Q(α, β, y1, . . . , yn)

)}
,

and find thereby an expression for Q(α, β, y1, . . . , yn).
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b) Show that a realisation from the full condition distribution for λ can be generated by first
sampling v from a χ2 distribution with a suitable degrees of freedom ν and thereafter
setting

λ = v · r,
for a suitable value r. Find the suitable values for ν and r. [Hint: Find first the density

function for the resulting λ as a function of ν and r and compare thereafter this expression

with the full conditional distribution found in the previous item.]

c) Write pseudo code generating samples from the posterior distribution π(α, β, λ|y1, . . . , yn)
by a Metropolis–Hastings algorithm. Specify what proposal distributions you use and find
expressions for the corresponding acceptance probabilities as functions of the parameters
in the problem. The acceptance probability expressions should be simplified as much as
possible.

Let {αk, βk, λk}K

k=1 be values simulated in the MCMC algorithm you specified in item c), where
K is the number of iterations run.

d) Specify how you from {αk, βk, λk}K

k=1 (and if necessary other simulated values, which you
then have to specify how to sample) can estimate

1. P(β > 0|y1, . . . , yn)

2. E[y0|y1, . . . , yn], where y0 is a new observation for x = x0

3. π(y0|y1, . . . , yn), where y0 is again a new observation for x = x0

Oppgave 3

In this exercise we consider the same regression problem as in Exercise 2, but now in a
non-Bayesian setting and using bootstrapping in the analysis. Thus, the observed data are
{(xi, yi)}n

i=1 and the model for yi is

yi = α + β(xi − x̄) + εi,

where ε1, . . . , εn are independent and from a zero mean double exponential distribution with
intensity λ,

π(εi) =
λ

2
exp {−λ|εi|} .

The maximum likelihood estimators for α and β in this model can be found by minimising

R(α, β, y1, . . . , yn) =

n∑

i=1

|yi − (α + β(xi − x̄))|
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with respect to α and β. In this exercise we will assume we have available a (numerical)
minimisation algorithm that do this minimisation and return the corresponding parameter
estimates α̂ and β̂. When α̂ and β̂ are obtained, the maximum likelihood estimator for λ, λ̂,
can easily be found as

λ̂ =
n

R(α̂, β̂, y1, . . . , yn)
.

a) To generate a bootstrap sample {(x⋆

i
, y⋆

i
)}n

i=1 one can imagine (at least) three methods,
one parametric and two non-parametric. For each of these three methods, describe in
detail how the bootstrap samples can be generated (you may use pseudo code).

Discuss briefly advantages and disadvantages with the three resampling methods. Are
there specific situations where one of the three methods is preferable?

Let {(x⋆(b)
i

, y
⋆(b)
i

)}n

i=1, b = 1, . . . , B be generated bootstrap samples (using one of the methods
discussed in item a).

b) Write pseudo code and equations necessary that describe how one from {(x⋆(b)
i

, y
⋆(b)
i

)}n

i=1, b =
1, . . . , B can

1. estimate SD(β̂)

2. estimate a confidence interval (percentile interval) for E[y0] = α + βx0, where y0 is
a new observation for x = x0

Finally we will consider how to generalise the idea used when defining the percentile confidence
interval to define also a bootstrap (percentile) prediction interval for a new observation y0 for
x = x0.

c) For each of the three resampling methods discussed in item a), discuss the possibility of
using bootstrapping to estimate a prediction interval for y0. For the resampling method(s)
where this is possible, give pseudo code and necessary equations that give how to compute
the interval. For the resampling method(s) where it is not possible to generate a prediction
interval, explain why it is not possible.


