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One yellow paper (A4 with stamp) with own formulas and notes.

Grading: July 1st 2010.

Problem 1

Consider a random sample X1, . . . , Xn where Xi ∈ {0, 1} for i = 1, . . . , n, P(Xi = 1) = p and
P(Xi = 0) = 1 − p, where p ∈ [0, 1] is a parameter. Note that we alternatively may write this
as

P(Xi = x) = px(1 − p)1−x for x = 0, 1.

a) Write the distribution P(Xi = x) on the form of a one-parameter exponential family,

P(Xi = x) = a(x)eφ(p)t(x)+b(p)

i.e. identify the functions a(x), φ(p), t(x) and b(p).

Use this to write down a formula for the conjugate prior distribution for p. Show that
this prior distribution can be expressed as

π(p) ∝ pα−1(1 − p)β−1 for p ∈ [0, 1].

What is this distribution called?
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In the following we assume that we adopt this conjugate prior distribution for p and that we
use α ≥ 1 and β ≥ 1. As you know, it then follows from general theory that the posterior
distribution π(p|x1, . . . , xn) is of the same form as the prior, but with updated parameters, i.e.

π(p|x1, . . . , xn) ∝ peα−1(1 − p)
eβ−1 for p ∈ [0, 1].

b) Find expressions for α̃ and β̃ as a function of α, β, n and the observed values x1, . . . , xn.

Using a uniform distribution on [0, 1] as proposal distribution, describe how one can
generate samples from π(p|x1, . . . , xn) by rejection sampling. In particular find formula

for the acceptance probability expressed by α̃, β̃ and the proposed value, and write
pseudo code for the simulation algorithm.

Problem 2

In this problem we will consider a classification problem in a Bayesian setting. Assume we
have only two classes, which we denote as class 0 and class 1, respectively. Corresponding to
class 0 we have n observations x1, . . . , xn, which we assume to come from a normal distribution
with mean µ0 and variance θ0. Corresponding to class 1 we have m observations y1, . . . , ym,
which we assume to come from a normal distribution with mean µ1 and variance θ1. Finally,
we have k observations z1, . . . , zk with unknown classes, so our goal is to classify each of these
to one of the two classes. Let ci ∈ {0, 1} denote the (unknown) class of zi, and assume

zi|ci = 0 ∼ N(µ0, θ0)

and
zi|ci = 1 ∼ N(µ1, θ1).

We also assume all x1, . . . , xn, y1, . . . , ym and z1, . . . , zk to be independent of each other.

Following a Bayesian strategy we assign prior distributions to the unknown quantities µ0, θ0, µ1,
θ1 and c1, . . . , ck. Apriori we assume µ0, µ1, θ0 and θ1 to be independent of each other and
independent of c1, . . . , ck. As priors for µ0 and µ1 we adopt improper uniform distributions
on (−∞,∞), and for θ0 and θ1 we assume inverse gamma prior distributions with (known)
parameters α and β. Given a hyper-parameter p ∈ [0, 1] we assume z1, . . . , zk to be apriori
independent with

P(ci = 1|p) = p , P(ci = 0|p) = 1 − p.

Finally, as prior for p we assume a uniform distribution on the interval [0, 1].

In Figure 1 the specified model is illustrated as a graphical model when n = m = k = 3. To
explore the resulting posterior distribution

π(µ0, µ1, θ0, θ1, p, c1, . . . , ck|x1, . . . , xn, y1, . . . , ym, z1, . . . , zk)
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Figure 1: A graphical model representation of the Bayesian model considered in Problem 2
when n = m = k = 3.

we will define and simulate a Gibbs sampler algorithm.

a) Discuss how the full conditional distribution for p can be found from your results in
Problem 1. Conclude by writing down a formula for the full conditional distribution for
p.

It can be shown (you do not need to do this!) that the full conditional distributions for µ0,
µ1, θ0 and θ1 are

µ0|everything else ∼ N

(∑n

i=1 xi +
∑k

i=1(1 − ci)zi

n +
∑k

i=1(1 − ci)
,

θ0

n +
∑k

i=1(1 − ci)

)
,

µ1|everything else ∼ N

(∑m

i=1 yi +
∑k

i=1 cizi

m +
∑k

i=1 ci

,
θ1

m +
∑k

i=1 ci

)
,

θ0|everything else ∼ IG

(
α +

1

2

[
n +

k∑

i=1

(1 − ci)

]
, β +

1

2

n∑

i=1

(xi − µ0)
2 +

1

2

k∑

i=1

(1 − ci)(zi − µ0)
2

)

and

θ1|everything else ∼ IG

(
α +

1

2

[
m +

k∑

i=1

ci

]
, β +

1

2

m∑

i=1

(yi − µ1)
2 +

1

2

k∑

i=1

ci(zi − µ1)
2

)
,
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respectively.

b) Find the full conditional distribution for ci. Give pseudo-code for simulating from this
distribution. Note: Remember that ci ∈ {0, 1}

Assume we have run a Gibbs sampler algorithm for S iterations and denote the generated
states by {µs

0, µ
s
1, θ

s
0, θ

s
1, p

s, cs
1, . . . , c

s
k}

S
s=0. In particular µ0

0, µ
0
1, θ

0
0, θ

0
1, p

0, c0
1, . . . , c

0
k are the initial

values.

c) How would you estimate P(ci = 1|x1, . . . , xn, y1, . . . , ym, z1, . . . , zk) from the simulated
values? If necessary, specify additional assumptions you are doing.

Specify how you would use the simulated values to classify each zi to one of the two
classes. If necessary, specify additional assumptions you are doing.

Discuss how you from the simulated values would estimate the error rate of your classi-
fication rule. If necessary, specify additional assumptions you are doing.

In the model discussed above we consider all z1, . . . , zk at the same time. An alternative is to
consider only one of the zi’s at a time with prior distribution P(ci = 0) = P(ci = 1) = 1/2, i.e.
without the hyper-parameter p. Thus, for each i = 1, . . . , k in turn we should then simulate
from π(µ0, µ1, θ0, θ1, ci, |x1, . . . , xn, y1, . . . , ym, zi) and use the result to classify zi.

d) Discuss how this would change the classification results relative to the above procedure.
Give reasons for your answer.
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Problem 3

Assume we have observations x1, . . . , xn which are independent realisations from some (un-
known) distribution F . We are interested in the variance of the distribution F, which we
denote by θ, i.e.

θ = t(F ) = VarF (X).

To estimate θ we use the sample variance, i.e.

θ̂ = s(x) =
1

n − 1

n∑

i=1

(xi − x̄)2.

We know of course that θ̂ is an unbiased estimator of θ, but in this problem we will pretend
we do not know this fact and therefore consider how we can estimate the bias of θ̂ by (non-
parametric) bootstrapping.

a) Define the bias of θ̂ as a function of F .

Define the ideal bootstrap estimator for the bias of θ̂.

Write pseudo-code for estimating the ideal bootstrap estimator for the bias of θ̂ by
stochastic simulation.

The situation we consider here is sufficiently simple that it is also possible to evaluate analyt-
ically (i.e. without simulation) the ideal bootstrap estimator for the bias of θ̂.

b) Show that the ideal bootstrap estimator for the bias of θ̂ is in fact equal to zero.


