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Department of Mathematical Sciences

English

Contact during exam:
Hakon Tjelmeland 73593538

EXAM IN TMA4300 COMPUTER INTENSIVE STATISTICAL METHODS

Thursday June 10th 2010
Time: 09:00-13:00

Aids: Calculator HP30S or Citizen SR-270X with empty memory.
Statistiske tabeller og formler, Tapir forlag.
K. Rottman: Matematisk formelsamling.
One yellow paper (A4 with stamp) with own formulas and notes.

Grading: July 1st 2010.

Problem 1

Consider a random sample X7, ..., X,, where X; € {0,1} fori =1,...,n, P(X; =1) =p and
P(X; =0) =1—p, where p € [0, 1] is a parameter. Note that we alternatively may write this

as
P(X; =) =p"(1—p)'™* for z=0,1.

a) Write the distribution P(X; = x) on the form of a one-parameter exponential family,
P(X; = x) = a(z)e?PH@)+0F)

i.e. identify the functions a(x), ¢(p), t(z) and b(p).

Use this to write down a formula for the conjugate prior distribution for p. Show that
this prior distribution can be expressed as

m(p) o p* (1 —p)? ! for p e [0,1].

What is this distribution called?
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In the following we assume that we adopt this conjugate prior distribution for p and that we
use « > 1 and § > 1. As you know, it then follows from general theory that the posterior
distribution 7 (p|z1, ..., x,) is of the same form as the prior, but with updated parameters, i.e.

w(pler, .. wa) o p* ML= )Pt for pe[0,1].

b) Find expressions for & and a as a function of «, 3, n and the observed values x4, ..., z,.

Using a uniform distribution on [0, 1] as proposal distribution, describe how one can
generate samples from m(p|zy,...,z,) by rejection sampling. In particular find formula
for the acceptance probability expressed by a, E and the proposed value, and write
pseudo code for the simulation algorithm.

Problem 2

In this problem we will consider a classification problem in a Bayesian setting. Assume we
have only two classes, which we denote as class 0 and class 1, respectively. Corresponding to
class 0 we have n observations x4, ..., x,, which we assume to come from a normal distribution
with mean g and variance ¢,. Corresponding to class 1 we have m observations yi, ..., Ym,
which we assume to come from a normal distribution with mean p; and variance 6;. Finally,
we have k observations zi, ..., 2, with unknown classes, so our goal is to classify each of these
to one of the two classes. Let ¢; € {0,1} denote the (unknown) class of z;, and assume

zilei = 0 ~ N(po, 0o)

and
Zi|ci =1~ N(,ul,Ql).

We also assume all x1,...,2,, y1,...,Yn and 2q,...,2; to be independent of each other.

Following a Bayesian strategy we assign prior distributions to the unknown quantities pyg, 6o, p1,
01 and ¢y, ..., c,. Apriori we assume g, 1, 6y and 6; to be independent of each other and
independent of ¢y,...,c,. As priors for ug and pu; we adopt improper uniform distributions
on (—oo,0), and for #y and 6; we assume inverse gamma prior distributions with (known)
parameters « and . Given a hyper-parameter p € [0,1] we assume z1,..., 2 to be apriori
independent with

P(Ci = 1|P) =D, P(Ci = 0|P) =1-p

Finally, as prior for p we assume a uniform distribution on the interval [0, 1].

In Figure 1 the specified model is illustrated as a graphical model when n = m =k = 3. To
explore the resulting posterior distribution

71-<:u07,ulu‘907917p7 Ciy .. ,Ck‘l’l, ey Ty Y1y -5 Ymy 215 - - '7zk)
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Figure 1: A graphical model representation of the Bayesian model considered in Problem 2
when n =m =k = 3.

we will define and simulate a Gibbs sampler algorithm.

a) Discuss how the full conditional distribution for p can be found from your results in
Problem 1. Conclude by writing down a formula for the full conditional distribution for

p-

It can be shown (you do not need to do this!) that the full conditional distributions for py,
i1, 6 and 6; are

n k
i—1 Ti (1 —ci)z Z
tio|everything else ~ N (le Tit Dim (1= i)z 0 ) ,

n+2?=1(1_ci) ’”"‘Z?ﬂ(l_ci)

w1 |everything else ~ N <

221 Yi + Zf=1 CiZ; 01
m+2lec,~ ’m+2f:10i ’

1

k
Op|everything else ~ IG (a + 5 |" + Zl(l —¢)

B+ % Z(% — pto)? + % Z(l —¢i)(zi — M0)2>

and

1
01|everything else ~ IG (a + 3

k
m + g C;
i=1

m k
1 1
B+ B) Z(?/z — )’ + 2 ZCZ(ZZ - ,u1)2> ,
i=1 '
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respectively.

b) Find the full conditional distribution for ¢;. Give pseudo-code for simulating from this
distribution. Note: Remember that ¢; € {0,1}

Assume we have run a Gibbs sampler algorithm for S iterations and denote the generated

states by {ug, u3, 05,05, p°,¢5, ..., ci}5 . In particular ud, 19,609,609, p°, 9, ..., ¢} are the initial
values.
¢) How would you estimate P(¢; = 1|1, ..., Zn, Y1, -+ Ym, 21, - - -, 2) from the simulated

values? If necessary, specify additional assumptions you are doing.

Specify how you would use the simulated values to classify each z; to one of the two
classes. If necessary, specify additional assumptions you are doing.

Discuss how you from the simulated values would estimate the error rate of your classi-
fication rule. If necessary, specify additional assumptions you are doing.

In the model discussed above we consider all zq, ..., z; at the same time. An alternative is to
consider only one of the z;’s at a time with prior distribution P(¢; = 0) = P(¢; = 1) = 1/2, i.e.
without the hyper-parameter p. Thus, for each ¢ = 1,...,k in turn we should then simulate
from 7(po, p1, 0o, 01, ¢, |T1, - s Tny Y1, - - -, Ym, 2i) and use the result to classify z;.

d) Discuss how this would change the classification results relative to the above procedure.
Give reasons for your answer.
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Problem 3

Assume we have observations 1, ..., x, which are independent realisations from some (un-
known) distribution F. We are interested in the variance of the distribution F, which we
denote by 0, i.e.

0 =t(F) = Varp(X).

To estimate 6 we use the sample variance, i.e.

0= s(z) = - i . Z(m — 7)2.

We know of course that @ is an unbiased estimator of ¢, but in this problem we will pretend
we do not know this fact and therefore consider how we can estimate the bias of 6 by (non-
parametric) bootstrapping.

a) Define the bias of § as a function of F.
Define the ideal bootstrap estimator for the bias of 0.

Write pseudo-code for estimating the ideal bootstrap estimator for the bias of 0 by
stochastic simulation.

The situation we consider here is sufficiently simple that it is also possible to evaluate analyt-
ically (i.e. without simulation) the ideal bootstrap estimator for the bias of 6.

b) Show that the ideal bootstrap estimator for the bias of 9 is in fact equal to zero.



