TMA4300 Computer
Intensive statistical
methods

Norwegian University of Science and Technology
Department of Mathematicak Sciences Solution - Exam June 2010

Problem 1
a) We have

P(X;=z)=exp{zlnp+ (1 —2)In(l —p)} =exp{z(lnp —In(l — p)) + In(1 — p)}

= exp {xln 1 P —|—ln(1—p)}

Thus, we may choose for example

a(zr) =1, ¢(p)=1In , t(z) =2 and b(p) =1In(1 —p).

1—p

The conjugate prior distribution becomes

7(p) x exp {d(p)a + b(p)b} = exp {aln l ép —bIn(1 — p)}

= (Ly (1—p)=p*(1—p),

L—p
where a and b are two parameters. After the reparameterisation « = a+1and § =b—a+1

we get
m(p) o p* (1 —p)!

as required. This is called a beta distribution.

b) We get

n

w(plz1, ..., zn) x T(P)P(X1 = 21,..., X, = 24|p) = 7(p) HP(Xi = xi|p)
i=1

n
o p (1= p)! ] [P (1 = p) ] = prt R (1 - p) i (e
=1
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_ pC‘H‘E?:l ﬂﬁi—l(l _ p)B+N—Z?:1 zi—1
Thus,
n . n
&:a—kzgni and B:ﬂ+n—2xi.

i=1 i=1

For a rejection sampling algorithm with proposal distribution g(p) and target distribu-

tion mw(p|z1,...,zy), the acceptance probability for a proposed value p is
. Cﬂ(p]xl, cey Tp)
9(p)

where ¢ is a constant ensuring that » < 1 for all values p. With g(p) = 1 and the
w(plxy,...,zy,) given above we get

r=af i1 p)

To find a legal value for ¢ we must maximise r with respect to p, set the maximal value equal
to 1 and solve the resulting equation with respect to ¢. We start by finding the derivative

a;;r N a%W ~1Inp+ (5~ 1) (1~ p)

a-1 f-1_a—-1-(@+5-2p
p 1-p p(1—p) '
Equating the derivative to zero we get

a-1
a+p3-2

It is given that a, 8 > 1, so we also have a, E > 1. Thereby
a—1

~7~€[0,1]7
a+p—2

so we ensure the acceptance probability is less than or equal to one by setting

_ ~ a-1 5 B-1
max_ |cp® 11 — p)ﬁ_l] =c <Q7~1> Lf =1
p€E[0,1] a+ -2 a+8—-2

SO a-1 , _ -~ -1
a—1 -1
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Thereby the acceptance probability becomes

o~ a-1 o~ -1
a+pg—-2 a+p3-—2
r:(p- a—1 ) <(1—p)' 5_1 ) :

Pseudo-code for the rejection sampling algorithm:
1. Generate a potential value for p, p ~ Unif(0, 1).

2. Compute the acceptance probability

o~ a-1 o~ f-1
|, ath-2 (1—p). 2022
r=\p =7 P B—l )

3. Generate u ~ Unif(0, 1).

4. If w < r return p, otherwise goto 1.

Problem 2

a) The full conditional distribution for p becomes

m(pleverything else) o< w(p, c1, ..y Chy 105 00y 101, 01, X1+ oy Ty Yty e v o s Yy 21y -+« 2k)

k n m
= 7(p) [H 7T(Q'|P)] 7 (o) (6o) (1) (61) [HW(MMO,HO)] [HW(%|M1,91)]
i—1

i=1 i=1

k
: [HW(%!C@»MO,HO’M,HQ]

i=1
k
o 7 (p) [ [ w(eilp),

i=1
where the proportionalities are as a function of p. Here m(p) is a uniform distribution
on [0,1] and 7(c;|p) = p%(1 — p)'~¢. Thus, we have the same situation as considered in
Problem 1 with @ = § = 1 and where our ¢; corresponds to x; in Problem 1. Thus, the full
conditional distribution becomes a beta distribution with parameters a =1 + Zle ¢; and

7(pleverything else) oc p® (1 — p)~1
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b) As a function of ¢; we get

7(c;leverything else) o< T(p, 1,y Chy 100, 00, 101501, 1, -« o s Try YLy -« o s Yy 215+ + 5 2k)

k n m
= 7(p) HW(C]'|P) 7 (po)w (0o ) (1) (01) HW(%‘WO,HO) Hﬂ(yj|,u1,91)
j=1 =i

j=1

k
: HW(Zi|C¢,M0,90,M1,91)] o< m(ci|p)m(zilci, po, 0o, pa, 01).
i=1

Thus, for some normalising constant v we have
7(c; = Oleverything else) = v - w(¢; = 0|p)7(zi|c; = 0, po, o, 11, 01)

1 (zi — po)?
vV 27‘(’90 290

=v(l—p)

and
7(¢; = 1|everything else) = v - w(¢; = 1|p)m(zilc; = 1, po, 6o, pu1, 61)

gL Emm)?
271'91 291 )

Thereby, since we must have 7(¢; = Oleverything else) + 7(¢; = 1|everything else) = 1, we
get

7(c;|everything else) =

1-p (im0 \\ 7% ([ p_ (z—p)? 1\
(Few{-2a2})  (Freof-“3"})
1— 2 — 2 Zi— 2 ’
(e {-Eat}) + (Frew {-=55))
Pseudo-code for simulating from the full conditional:

1. Compute the probability for ¢; = 1:

\/Lé)_l exp {—7(%;9?)2 }
([ (o 5))

7(c1 = 1leverything else) =

2. Generate u ~ Unif(0,1).

3. If u < m(¢; = 1|everything else) return ¢; = 1, otherwise return ¢; = 0.
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c) First one needs to find the length of the burn-in phase of the Markov chain. This can
be done by output analysis. Assuming the Markov chain has (essentially) converged after
T < S iterations, the natural estimator for the first quantity is

S

~ 1
Plei =11, ooy Ty YLy e ooy Yy 21y - e v 5 2K) = chf
s=T

No additional assumptions are necessary.

The natural classification rule for observation z; is

~ _J o if ﬁ(cl =Xty Ty Yig ooy Yy 21y -+ 2k) < 0.5
! 1 otherwise.

No additional assumptions are necessary here.

To estimate the error rate one needs to make an assumption about the distribution of the
test data, (¢, z). A natural assumption is to assume we want to estimate the error rate for
test data that are coming from the same distribution as the observed z1,...,z;. If so, the
natural estimator of the error rate is

err =

k
ZP(CZ‘ F ClT1y o Ty YLy e vy Yy 21y -+ 5 2k )-
i=1

One should note that one then use the same data both for training and testing, so this
estimator would tend to be optimistic.

d) By stating that the ¢;’s have a common probability p of being equal to 1, as we are
doing in the first model but not in the alternative model, we increase the probability for
the ¢;’s to be equal. Thus, if for example 75% of the z;’s are classified as class 0 by the first
model we would expect that slightly less than 75% are classified as class 0 in the alternative
model. Conversely, if 25% of the z;’s are classified to class 0 in the first model we would
expect that slightly more than 25% of the cases are classified as class 0 in the alternative
model.

Problem 3

a) The bias of @ is defined as

biasp = biasp(0,0) = Epl0] — 0 = Ep[s(z)] — t(F) = Ep [n i - Y (@i - @)?
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The ideal bootstrap estimator for the bias of 9 is then given as

1 n
biaSﬁ = EF\ [m Z(Z’: — .i-*)Q — Varﬁ(l'*)7
=1

=Ep [n i 1 > (@ - f*)2] - % Z(ﬂﬁz‘ - 1),

i=1
where F' is the empirical distribution of x1,...,x,.

The ideal bootstrap estimator can be estimated by Monte Carlo simulation by the following
algorithm:

1. Forb=1,...,Bandi=1,...,n draw x:(b) from the values x1, ..., z, independently
at random. For b =1,..., B, form the bootstrap samples 2*(®) = (xf(b), ... ,xz(b)).

2. Forb=1,...,B compute

G+ (b) = — S (@ - 7®)? where 70 = 1 S ),

n—1+4 ‘
=1 =1

3. Estimate the ideal bootstrap estimator for the bias of ) by

B n

- 1 N* 1 —\2
blaSB:EbZ;G (b)—ﬁiz_;(xi—x) .

b)
From the solution of a) we have that

biaSﬁ: = Eﬁ [TL i 1 Z(:U: — j*)2] _ % Z(zz — j)Q, (1)

=1

Thus, we need to evaluate analytically the first of the two terms. We have

Ep [ﬁ Z;(xf - m*)2] T 1 1 Z_;EF‘ (2} —27)%] = n - B (@ -2 @)

Expanding the square, and inserting for z* = (1/n) > 7, 27,

we get

Ep [(@i — 7)°] = Epl(«))?] - 2Eplai}] + Epl(z*)?]

7
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n n n
2

1
= Egl@})?) = = Y Eplaiail + = 3" 3 Bpleai]
j=1 j=1k=1
*\2 2 *\2 * K 1 S *\2 S * K
= Epl(@i)] = — | Epl(z?) ]+ Eplaiaj]| + 3 D Epl@)?+) ) Eplajai]
i =1 =1 kj
2 *\2 1 - *\2 2 * * 1 - * *
= (1= ) Epl@)]+ 5 > Bal})’] - - Y EplatEpla] + — Y Epla|Ep(ar).
j=1 j#i j=1 k#j
Inserting this into (2) and using that zF has the same distribution for all ¢ = 1,...,n we
(2
get
1 n n )
* *
B [ Y -
i=1 i=1
n 2 n 9 nn—1) 2(n—-1) 2
— (- 2 e+ (M - 220 (g
R 1 < g
= Eﬁ[(w?ﬁ - (Eﬁ[wﬂ) 0 Z%Q - (5 Z%) = Z(% - E)Q
i=1 i=1 i=1
Inserting this into (1) we get
biasz = 0.
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