

TMA4300 Computer intensive statistical methods

Norwegian University of Science and Technology Department of Mathematicak Sciences

Solution - Exam June 2010

Problem 1

a) We have

$$P(X_i = x) = \exp\{x \ln p + (1 - x) \ln(1 - p)\} = \exp\{x (\ln p - \ln(1 - p)) + \ln(1 - p)\}$$
$$= \exp\{x \ln \frac{p}{1 - p} + \ln(1 - p)\}$$

Thus, we may choose for example

$$a(x) = 1$$
 , $\phi(p) = \ln \frac{p}{1-p}$, $t(x) = x$ and $b(p) = \ln(1-p)$.

The conjugate prior distribution becomes

$$\pi(p) \propto \exp \{\phi(p)a + b(p)b\} = \exp \left\{ a \ln \frac{p}{1-p} - b \ln(1-p) \right\}$$

$$= \left(\frac{p}{1-p}\right)^a (1-p)^b = p^a (1-p)^{b-a},$$

where a and b are two parameters. After the reparameterisation $\alpha = a+1$ and $\beta = b-a+1$ we get

$$\underline{\pi(p) \propto p^{\alpha - 1} (1 - p)^{\beta - 1}}$$

as required. This is called a beta distribution

b) We get

$$\pi(p|x_1,\ldots,x_n) \propto \pi(p)P(X_1 = x_1,\ldots,X_n = x_n|p) = \pi(p)\prod_{i=1}^n P(X_i = x_i|p)$$

$$\propto p^{\alpha - 1} (1 - p)^{\beta - 1} \prod_{i=1}^{n} \left[p^{x_i} (1 - p)^{1 - x_i} \right] = p^{\alpha + \sum_{i=1}^{n} x_i - 1} (1 - p)^{\beta + \sum_{i=1}^{n} (1 - x_i) - 1}$$

$$= p^{\alpha + \sum_{i=1}^{n} x_i - 1} (1 - p)^{\beta + n - \sum_{i=1}^{n} x_i - 1}.$$

Thus,

$$\widetilde{\alpha} = \alpha + \sum_{i=1}^{n} x_i$$
 and $\widetilde{\beta} = \beta + n - \sum_{i=1}^{n} x_i$.

For a rejection sampling algorithm with proposal distribution g(p) and target distribution $\pi(p|x_1,\ldots,x_n)$, the acceptance probability for a proposed value p is

$$r = c \frac{\pi(p|x_1, \dots, x_n)}{g(p)},$$

where c is a constant ensuring that $r \leq 1$ for all values p. With g(p) = 1 and the $\pi(p|x_1, \ldots, x_n)$ given above we get

$$r = cp^{\widetilde{\alpha} - 1} (1 - p)^{\widetilde{\beta} - 1}.$$

To find a legal value for c we must maximise r with respect to p, set the maximal value equal to 1 and solve the resulting equation with respect to c. We start by finding the derivative

$$\frac{\partial \ln r}{\partial p} = \frac{\partial}{\partial p} [(\widetilde{\alpha} - 1) \ln p + (\widetilde{\beta} - 1) \ln (1 - p)]$$

$$=\frac{\widetilde{\alpha}-1}{p}-\frac{\widetilde{\beta}-1}{1-p}=\frac{\widetilde{\alpha}-1-(\widetilde{\alpha}+\widetilde{\beta}-2)p}{p(1-p)}.$$

Equating the derivative to zero we get

$$p = \frac{\widetilde{\alpha} - 1}{\widetilde{\alpha} + \widetilde{\beta} - 2}.$$

It is given that $\alpha, \beta \geq 1$, so we also have $\widetilde{\alpha}, \widetilde{\beta} \geq 1$. Thereby

$$\frac{\widetilde{\alpha} - 1}{\widetilde{\alpha} + \widetilde{\beta} - 2} \in [0, 1],$$

so we ensure the acceptance probability is less than or equal to one by setting

$$\max_{p \in [0,1]} \left[cp^{\widetilde{\alpha}-1} (1-p)^{\widetilde{\beta}-1} \right] = c \left(\frac{\widetilde{\alpha}-1}{\widetilde{\alpha}+\widetilde{\beta}-2} \right)^{\widetilde{\alpha}-1} \left(\frac{\widetilde{\beta}-1}{\widetilde{\alpha}+\widetilde{\beta}-2} \right)^{\beta-1} = 1$$

$$\Rightarrow c = \left(\frac{\widetilde{\alpha}+\widetilde{\beta}-2}{\widetilde{\alpha}-1} \right)^{\widetilde{\alpha}-1} \left(\frac{\widetilde{\alpha}+\widetilde{\beta}-2}{\widetilde{\beta}-1} \right)^{\widetilde{\beta}-1}.$$

Thereby the acceptance probability becomes

$$r = \left(p \cdot \frac{\widetilde{\alpha} + \widetilde{\beta} - 2}{\widetilde{\alpha} - 1}\right)^{\widetilde{\alpha} - 1} \left((1 - p) \cdot \frac{\widetilde{\alpha} + \widetilde{\beta} - 2}{\widetilde{\beta} - 1}\right)^{\widetilde{\beta} - 1}.$$

Pseudo-code for the rejection sampling algorithm:

- 1. Generate a potential value for $p, p \sim \text{Unif}(0, 1)$.
- 2. Compute the acceptance probability

$$r = \left(p \cdot \frac{\widetilde{\alpha} + \widetilde{\beta} - 2}{\widetilde{\alpha} - 1}\right)^{\widetilde{\alpha} - 1} \left((1 - p) \cdot \frac{\widetilde{\alpha} + \widetilde{\beta} - 2}{\widetilde{\beta} - 1}\right)^{\widetilde{\beta} - 1}.$$

- 3. Generate $u \sim \text{Unif}(0,1)$.
- 4. If $u \leq r$ return p, otherwise goto 1.

Problem 2

a) The full conditional distribution for p becomes

$$\pi(p|\text{everything else}) \propto \pi(p, c_1, \dots, c_k, \mu_0, \theta_0, \mu_1, \theta_1, x_1, \dots, x_n, y_1, \dots, y_m, z_1, \dots, z_k)$$

$$= \pi(p) \left[\prod_{i=1}^k \pi(c_i|p) \right] \pi(\mu_0) \pi(\theta_0) \pi(\mu_1) \pi(\theta_1) \left[\prod_{i=1}^n \pi(x_i|\mu_0, \theta_0) \right] \left[\prod_{i=1}^m \pi(y_i|\mu_1, \theta_1) \right] \cdot \left[\prod_{i=1}^k \pi(z_i|c_i, \mu_0, \theta_0, \mu_1, \theta_1) \right]$$

$$\propto \pi(p) \prod_{i=1}^k \pi(c_i|p),$$

where the proportionalities are as a function of p. Here $\pi(p)$ is a uniform distribution on [0,1] and $\pi(c_i|p) = p^{c_i}(1-p)^{1-c_i}$. Thus, we have the same situation as considered in Problem 1 with $\alpha = \beta = 1$ and where our c_i corresponds to x_i in Problem 1. Thus, the full conditional distribution becomes a beta distribution with parameters $\tilde{\alpha} = 1 + \sum_{i=1}^k c_i$ and $\tilde{\beta} = 1 + k - \sum_{i=1}^k c_i$,

$$\pi(p|\text{everything else}) \propto p^{\tilde{\alpha}-1}(1-p)^{\tilde{\beta}-1}$$

b) As a function of c_i we get

$$\pi(c_i|\text{everything else}) \propto \pi(p, c_1, \dots, c_k, \mu_0, \theta_0, \mu_1, \theta_1, x_1, \dots, x_n, y_1, \dots, y_m, z_1, \dots, z_k)$$

$$= \pi(p) \left[\prod_{j=1}^{k} \pi(c_j|p) \right] \pi(\mu_0) \pi(\theta_0) \pi(\mu_1) \pi(\theta_1) \left[\prod_{j=1}^{n} \pi(x_j|\mu_0, \theta_0) \right] \left[\prod_{i=j}^{m} \pi(y_j|\mu_1, \theta_1) \right] \cdot \left[\prod_{i=1}^{k} \pi(z_i|c_i, \mu_0, \theta_0, \mu_1, \theta_1) \right] \propto \pi(c_i|p) \pi(z_i|c_i, \mu_0, \theta_0, \mu_1, \theta_1).$$

Thus, for some normalising constant v we have

$$\pi(c_i = 0 | \text{everything else}) = v \cdot \pi(c_i = 0 | p) \pi(z_i | c_i = 0, \mu_0, \theta_0, \mu_1, \theta_1)$$

$$=v(1-p)\frac{1}{\sqrt{2\pi\theta_0}}\exp\left\{-\frac{(z_i-\mu_0)^2}{2\theta_0}\right\}$$

and

$$\pi(c_i = 1 | \text{everything else}) = v \cdot \pi(c_i = 1 | p) \pi(z_i | c_i = 1, \mu_0, \theta_0, \mu_1, \theta_1)$$
$$= vp \frac{1}{\sqrt{2\pi\theta_1}} \exp\left\{-\frac{(z_i - \mu_1)^2}{2\theta_1}\right\}.$$

Thereby, since we must have $\pi(c_i = 0|\text{everything else}) + \pi(c_i = 1|\text{everything else}) = 1$, we get

$$\pi(c_i|\text{everything else}) = \frac{\left(\frac{1-p}{\sqrt{\theta_0}}\exp\left\{-\frac{(z_i-\mu_0)^2}{2\theta_0}\right\}\right)^{1-c_i}\left(\frac{p}{\sqrt{\theta_1}}\exp\left\{-\frac{(z_i-\mu_1)^2}{2\theta_1}\right\}\right)^{c_i}}{\left(\frac{1-p}{\sqrt{\theta_0}}\exp\left\{-\frac{(z_i-\mu_0)^2}{2\theta_0}\right\}\right) + \left(\frac{p}{\sqrt{\theta_1}}\exp\left\{-\frac{(z_i-\mu_1)^2}{2\theta_1}\right\}\right)}.$$

Pseudo-code for simulating from the full conditional:

1. Compute the probability for $c_i = 1$:

$$\pi(c_1 = 1 | \text{everything else}) = \frac{\frac{p}{\sqrt{\theta_1}} \exp\left\{-\frac{(z_i - \mu_1)^2}{2\theta_1}\right\}}{\left(\frac{1 - p}{\sqrt{\theta_0}} \exp\left\{-\frac{(z_i - \mu_0)^2}{2\theta_0}\right\}\right) + \left(\frac{p}{\sqrt{\theta_1}} \exp\left\{-\frac{(z_i - \mu_1)^2}{2\theta_1}\right\}\right)}.$$

- 2. Generate $u \sim \text{Unif}(0,1)$.
- 3. If $u \leq \pi(c_i = 1 | \text{everything else})$ return $c_i = 1$, otherwise return $c_i = 0$.

c) First one needs to find the length of the burn-in phase of the Markov chain. This can be done by output analysis. Assuming the Markov chain has (essentially) converged after T < S iterations, the natural estimator for the first quantity is

$$\widehat{P}(c_i = 1 | x_1, \dots, x_n, y_1, \dots, y_m, z_1, \dots, z_k) = \frac{1}{S - T + 1} \sum_{c = T}^{S} c_i^s.$$

No additional assumptions are necessary.

The natural classification rule for observation z_i is

$$\widehat{c}_i = \begin{cases} 0 & \text{if } \widehat{P}(c_i = 1 | x_1, \dots, x_n, y_i, \dots, y_m, z_1, \dots, z_k) \leq 0.5 \\ 1 & \text{otherwise.} \end{cases}$$

No additional assumptions are necessary here.

To estimate the error rate one needs to make an assumption about the distribution of the test data, (c, z). A natural assumption is to assume we want to estimate the error rate for test data that are coming from the same distribution as the observed z_1, \ldots, z_k . If so, the natural estimator of the error rate is

$$\widehat{\text{err}} = \frac{1}{k} \sum_{i=1}^{k} \widehat{P}(c_i \neq \widehat{c}_i | x_1, \dots, x_n, y_1, \dots, y_m, z_1, \dots, z_k).$$

One should note that one then use the same data both for training and testing, so this estimator would tend to be optimistic.

d) By stating that the c_i 's have a common probability p of being equal to 1, as we are doing in the first model but not in the alternative model, we increase the probability for the c_i 's to be equal. Thus, if for example 75% of the z_i 's are classified as class 0 by the first model we would expect that slightly less than 75% are classified as class 0 in the alternative model. Conversely, if 25% of the z_i 's are classified to class 0 in the first model we would expect that slightly more than 25% of the cases are classified as class 0 in the alternative model.

Problem 3

a) The bias of $\widehat{\theta}$ is defined as

$$\operatorname{bias}_F = \operatorname{bias}_F(\widehat{\theta}, \theta) = \operatorname{E}_F[\widehat{\theta}] - \theta = \operatorname{E}_F[s(x)] - t(F) = \operatorname{E}_F\left[\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2\right] - \operatorname{Var}_F(x).$$

The ideal bootstrap estimator for the bias of $\hat{\theta}$ is then given as

$$\operatorname{bias}_{\widehat{F}} = \operatorname{E}_{\widehat{F}} \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_i^{\star} - \bar{x}^{\star})^2 \right] - \operatorname{Var}_{\widehat{F}}(x^{\star}),$$

$$= \mathbb{E}_{\widehat{F}} \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_i^{\star} - \bar{x}^{\star})^2 \right] - \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2,$$

where \widehat{F} is the empirical distribution of x_1, \ldots, x_n .

The ideal bootstrap estimator can be estimated by Monte Carlo simulation by the following algorithm:

- 1. For $b=1,\ldots,B$ and $i=1,\ldots,n$ draw $x_i^{\star(b)}$ from the values x_1,\ldots,x_n independently at random. For $b=1,\ldots,B$, form the bootstrap samples $x^{\star(b)}=(x_1^{\star(b)},\ldots,x_n^{\star(b)})$.
- 2. For $b = 1, \ldots, B$ compute

$$\widehat{\theta}^{\star}(b) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i^{\star(b)} - \bar{x}^{\star(b)})^2 \quad \text{where} \quad \bar{x}^{\star(b)} = \frac{1}{n} \sum_{i=1}^{n} x_i^{\star(b)}.$$

3. Estimate the ideal bootstrap estimator for the bias of $\widehat{\theta}$ by

$$\widehat{\text{bias}}_B = \frac{1}{B} \sum_{b=1}^B \widehat{\theta}^*(b) - \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$$

b) From the solution of **a**) we have that

$$\operatorname{bias}_{\widehat{F}} = \operatorname{E}_{\widehat{F}} \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_i^{\star} - \bar{x}^{\star})^2 \right] - \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2.$$
 (1)

Thus, we need to evaluate analytically the first of the two terms. We have

$$E_{\widehat{F}}\left[\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}^{\star}-\bar{x}^{\star})^{2}\right] = \frac{1}{n-1}\sum_{i=1}^{n}E_{\widehat{F}}\left[(x_{i}^{\star}-\bar{x}_{i}^{\star})^{2}\right] = \frac{n}{n-1}E_{\widehat{F}}\left[(x_{i}^{\star}-\bar{x}_{i}^{\star})^{2}\right]. \tag{2}$$

Expanding the square, and inserting for $\bar{x}^* = (1/n) \sum_{j=1}^n x_j^*$, we get

$$\mathbf{E}_{\widehat{F}}\left[(x_i - \bar{x}_i^{\star})^2\right] = \mathbf{E}_{\widehat{F}}[(x_i^{\star})^2] - 2\mathbf{E}_{\widehat{F}}[x_i^{\star}\bar{x}_i^{\star}] + \mathbf{E}_{\widehat{F}}[(\bar{x}^{\star})^2]$$

$$\begin{split} &= \mathbf{E}_{\widehat{F}}[(x_i^{\star})^2] - \frac{2}{n} \sum_{j=1}^n \mathbf{E}_{\widehat{F}}[x_i^{\star} x_j^{\star}] + \frac{1}{n^2} \sum_{j=1}^n \sum_{k=1}^n \mathbf{E}_{\widehat{F}}[x_j^{\star} x_k^{\star}] \\ &= \mathbf{E}_{\widehat{F}}[(x_i^{\star})^2] - \frac{2}{n} \left[\mathbf{E}_{\widehat{F}}[(x_i^{\star})^2] + \sum_{j \neq i} \mathbf{E}_{\widehat{F}}[x_i^{\star} x_j^{\star}] \right] + \frac{1}{n^2} \left[\sum_{j=1}^n \mathbf{E}_{\widehat{F}}[(x_j^{\star})^2] + \sum_{j=1}^n \sum_{k \neq j} \mathbf{E}_{\widehat{F}}[x_j^{\star} x_k^{\star}] \right] \\ &= \left(1 - \frac{2}{n} \right) \mathbf{E}_{\widehat{F}}[(x_i^{\star})^2] + \frac{1}{n^2} \sum_{j=1}^n \mathbf{E}_{\widehat{F}}[(x_j^{\star})^2] - \frac{2}{n} \sum_{j \neq i} \mathbf{E}_{\widehat{F}}[x_i^{\star}] \mathbf{E}_{\widehat{F}}[x_j^{\star}] + \frac{1}{n^2} \sum_{j=1}^n \sum_{k \neq j} \mathbf{E}_{\widehat{F}}[x_j^{\star}] \mathbf{E}_{\widehat{F}}[x_k^{\star}]. \end{split}$$

Inserting this into (2) and using that x_i^* has the same distribution for all i = 1, ..., n we get

$$E_{\widehat{F}}\left[\frac{1}{n-1}\sum_{i=1}^{n}\sum_{i=1}^{n}(x_{i}^{\star}-\bar{x}^{\star})^{2}\right]$$

$$=\frac{n}{n-1}\left[\left(1-\frac{2}{n}+\frac{n}{n^{2}}\right)E_{\widehat{F}}[(x_{i}^{\star})^{2}]+\left(\frac{n(n-1)}{n^{2}}-\frac{2(n-1)}{n}\right)\left(E_{\widehat{F}}[x_{i}^{\star}]\right)^{2}\right]$$

$$=E_{\widehat{F}}[(x_{i}^{\star})^{2}]-\left(E_{\widehat{F}}[x_{i}^{\star}]\right)^{2}=\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}-\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{2}=\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}.$$

Inserting this into (1) we get

$$\underline{\mathrm{bias}_{\widehat{F}} = 0}.$$