
TMA4300 Final Exam 2023 Solutions

Problem 1

a)

The following algorithm works, although it’s about half as efficient as it should

be. Mathematical operations are assumed to be vectorized when possible. We

apply the Box-Muller algorithm:

Algorithm 1 stdGauss(p)

Set U1 ← runif(p)

Set U2 ← runif(p)

Set Z0 ←
√
−2 ln(U1) cos(2πU2)

Return Z0

b)

Algorithm 2 mvn(N, mu, L)

Set p← length of µ times N

Z ← matrix(stdGauss(p), ncol=N)

X0 ← LZ

Add µ to the columns of X0, and set xmat to the result

Return xmat

1

c)

Algorithm 3 mvt(N, mu, L, nu)

xmat ← mvn(N, mu, L)

uvec ← colSums(matrix(runif(N*nu), ncol=N)^2)

tmat ← xmat

for i in 1:N do

tmat[,i] = (xmat[,i] - mu)
√
ν/uvec[i] + mu

end for

Return tmat

Problem 2

a)

First, we will show that

P (accept z) =
N − p+ 1∏p

i=1 zi

using the definitions of C and κ as described in the problem statement. Then,

C ≡ sup
z∈A

P (X = z|X1 ≥ 1, . . . , Xp ≥ 1)

P (Y = z − 1)

= sup
z∈A

P (X = z)/P (X1 ≥ 1, . . . , Xp ≥ 1)

P (Y = z − 1)
(since zi ≥ 1 ∀ i if z ∈ A)

≡ 1

κ
sup
z∈A

P (X = z)

P (Y = z − 1)
,

2

where κ = P (X1 ≥ 1, . . . , Xp ≥ 1). Now,

C∗ = sup
z∈A

P (X = z)

P (Y = z − 1)

= sup
z∈A

N !
z1!...zp!π

z1
1 . . . π

zp
p

(N−p)!
(z1−1)!...(zp−1)!π

z1−1
1 . . . π

zp−1
p

=

(
N !

(N − p)!

p∏
i=1

πi

)
sup
z∈A

p∏
i=1

1

zi

=

(
N !

(N − p)!

p∏
i=1

πi

)
1

N − p+ 1
(maximized if all but 1 zi is 1).

The acceptance probability is then:

P (accept z) =
1

C

P (X = z|X1 ≥ 1, . . . , Xp ≥ 1)

P (Y = z − 1)

=
1

C∗
P (X = z)

P (Y = z − 1)

=

(
(N − p)!

n!

N − p∏p
i=1 πi

) N !
z1!...zp!π

z1
1 . . . π

zp
p

(N−p)!
(z1−1)!...(zp−1)!π

z1−1
1 . . . π

zp−1
p

=
N − p+ 1∏p

i=1 zi
,

giving the desired result.

b)

The expected proportion of proposals that are accepted is given by

1

C
=

κ

C∗

= κ

(
(N − p)!
N !

p∏
i=1

1

πi

)
(N − p+ 1)

= P (X ∈ A)
(N − p)!
N !

pp(N − p+ 1).

Since there is no closed form for P (X ∈ A) this is as far as we can simplify the

above expression. However, it is worth noting that if N = p exactly, then the

acceptance probability must be 1. On the other hand, as N →∞ for any fixed

p the acceptance probability converges to 0. Hence, this sampler likely performs

better (i.e. has higher acceptance probabilities) when N is close to p.

3

Problem 3

a)

Let Ȳ i = 1
n

∑n
j=1 Yij . The posterior is then:

p(λ, α, β | Y 1, . . . ,Y m) ∝ p(Y 1, . . . ,Y m | λ, α, β)p(λ | α, β)p(α)p(β)

=

 m∏
i=1

n∏
j=1

λ
Yij
i e−λi

Yij !

(m∏
i=1

βα

Γ(α)
λα−1
i e−βλi

)(
BA

Γ(A)
αA−1e−Bα

)(
DC

Γ(C)
βC−1e−Dβ

)

∝

(
m∏
i=1

λnȲ i
i e−nλi

)(
m∏
i=1

βα

Γ(α)
λα−1
i e−βλi

)(
αA−1e−Bα

) (
βC−1e−Dβ

)
.

The full conditional for λi is then,

p(λi | α, β,Y 1, . . . ,Y m) ∝
(
λnȲ i
i e−nλi

) (
λα−1
i e−βλi

)
= λα+nȲ i−1

i e−(β+n)λi ,

which is the kernel/core of a Gamma(α + nȲ i, β + n). The full conditional of

λi is therefore a Gamma(α+ nȲ i, β + n) distribution.

b)

The acceptance probability is:

P

(
accept

(
α′

β′

))
= min

{
1,
p(λ, α′, β′ | Y 1, . . . ,Y m)

p(λ, α, β | Y 1, . . . ,Y m)

}
.

4

Now,

p(λ, α′, β′ | Y 1, . . . ,Y m)

p(λ, α, β | Y 1, . . . ,Y m)
=

(∏m
i=1

(β′)α
′

Γ(α′) λ
α′−1
i e−β

′λi

)(
(α′)A−1e−Bα

′
)(

(β′)C−1e−Dβ
′
)

(∏m
i=1

βα

Γ(α)λ
α−1
i e−βλi

)
(αA−1e−Bα) (βC−1e−Dβ)

=

(
m∏
i=1

Γ(α)(β′)α
′

Γ(α′)βα
λα

′−α−1
i e−(β′−β)λi

)

×

((
α′

α

)A−1

e−B(α′−α)

)((
β′

β

)C−1

e−D(β′−β)

)

=

(
Γ(α)m(β′)mα

′

Γ(α′)mβmα

m∏
i=1

λα
′−α−1
i e−(β′−β)λi

)

×

((
α′

α

)A−1

e−B(α′−α)

)((
β′

β

)C−1

e−D(β′−β)

)

=

Γ(α)m(β′)mα
′+C−1

Γ(α′)mβmα+C−1

(
m∏
i=1

λi

)α′−α−1

e−(β′−β)
∑m
i=1 λi


×

((
α′

α

)A−1

e−B(α′−α)−D(β′−β)

)

=
Γ(α)m(β′)mα

′+C−1

Γ(α′)mβmα+C−1

(
m∏
i=1

λi

)α′−α−1(
α′

α

)A−1

× exp

{
−(β′ − β)

(
D +

m∑
i=1

λi

)
−B(α′ − α)

}

so the acceptance probability is the maximum of the above value and 1.

To avoid numerical roundoff issues and to reduce computation time it is impor-

tant to simplify acceptance probabilities as much as possible and to calculate

them on a log scale. In addition, the gamma function and factorials (including

binomial coefficients) as well as some other functions should be calculated di-

rectly on a log scale rather than taking the log of the function itself to avoid

numerical problems.

c)

No, it is not possible in general to know if the sampler converged. Although

5

diagnostics exist to show that the sampler did not converge (or didn’t draw

enough samples), such as trace plots, Geweke tests, and effective sample size

calculations, they can only be used to show that a sampler has not yet con-

verged. However, in the case that, for example, a distribution is bimodal with

modes sufficiently separated, a sampler can appear as if it converged according

to those tests when it has only stayed near one mode.

You could select σ2 by, for example, using traceplots, effective sample size,

or average acceptance probability. Traceplots for each parameter should look

like a homogeneous band, and poor tuning parameter choices will affect this.

The tuning parameter could be chosen to maximize the effective sample size of

α and/or β. The tuning parameter could also be chosen so that the average ac-

ceptance probability (for the Metropolis steps specifically) is within the optimal

range for Metropolis steps, typically between 20% and 50%.

Problem 4

a)

1. Yes, this can be fit in INLA. All latent effects are Gaussian conditional on

the hyperparameters, and the responses are iid conditional on the latent

effects and hyper parameters.

2. No, this cannot be fit in INLA, since εi is a latent effect that is non-

Gaussian.

3. Yes, this can be fit in INLA. The latent effects are all Gaussian conditional

on the hyperparameters, and the responses are iid conditional on the latent

effects and hyperparameters. Further, γ has sparse precision matrix Q,

ensuring that computation is feasible.

4. Yes, this can be fit in INLA. The latent effects are joint Gaussian and

6

random walks are GMRFs, ensuring the precision matrix of γ conditional

on the hyperparamater τγ is sparse and computation is feasible. Further,

the responses are iid conditional on the latent effects and hyperparameters.

Problem 5

a)

The full likelihood is:

f(z,u | p) =
∏
i:ui=1

e−zi
∏
i:ui=0

3e−3zi

n∏
i=1

pui(1− p)1−ui ,

so the full log likelihood is:

`(z,u | p) =
∑
i:ui=1

(−zi) +
∑
i:ui=0

(log(3)− 3zi) +

n∑
i=1

ui log(p) + (1− ui) log(1− p)

=

n∑
i=1

ui(−zi) +

n∑
i=1

(1− ui)(log(3)− 3zi) +

n∑
i=1

ui log(p) + (1− ui) log(1− p).

Given the definition of δp(t)(zi),

E[`(p) | z, p(t)] =

n∑
i=1

E[ui | z, p(t)](−zi) +

n∑
i=1

(1− E[ui | z, p(t)])(log(3)− 3zi)

+

n∑
i=1

E[ui | z, p(t)] log(p) + (1− E[ui | z, p(t)]) log(1− p)

=

n∑
i=1

(
δp(t)(zi) · (−zi) + (1− δp(t)(zi)) · (log(3)− 3zi)

)
+ log(p)

n∑
i=1

δp(t)(zi) + log(1− p)
n∑
i=1

(1− δp(t)(zi)).

b)

We begin by differentiating the above expression with respect to p and setting

7

the result to 0:

∂

∂p
E[`(p) | z, p(t)] = 0 =

1

p

n∑
i=1

δp(t)(zi)−
1

1− p

n∑
i=1

(1− δp(t)(zi))

p

n∑
i=1

(1− δp(t)(zi)) = (1− p)
n∑
i=1

δp(t)(zi)

n∑
i=1

(1− δp(t)(zi)) = np

p =
1

n

n∑
i=1

δp(t)(zi).

Hence, we set p(t+1) = 1
n

∑n
i=1 δp(t)(zi).

To estimate the standard error of p̂ you could use bootstrapping. This would

involve sampling, with replacement, bootstrapped pseudodatasets (z∗1 , . . . , z
∗
n)

of size n (since the ui’s are not observed), and each time estimating p. Say you

do this 1000 times, for example. Then this would yields 1000 different samples

from the bootstrapped distribution of p̂, and you could estimate the SE from

these samples in the standard way.

8

