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Problem 1 Suppose that X has cumulative distribution

F (x) =


0, x < 0
√
x, 0 ≤ x ≤ 1

1, x > 1.

a) Find the expected value and variance of X. Suppose that we were to estimate the
expected value of X using Monte-Carlo integration. How would you simulate realisations
of X? Using the known variance of X, calculate the true variance of the Monte-Carlo
estimator of EX if the estimator is based on n = 1000 realizations X1, X2, . . . , Xn. Find
the same variance if the Monte-Carlo estimator is additionally based on 1000 antithetic
realisations X∗

1 , X
∗
2 , . . . , X

∗
n.

Problem 2

The ratio-of-uniforms method involves simulating X1 and X2 uniformly from a set C =
{(x1, x2) : 0 ≤ x1 ≤

√
f ∗(x2/x1)}. It follows that C ⊂ [0, a]× [b−, b+] where a = supx

√
f ∗(x),

b− = −
√

supx≤0 x
2f ∗(x) and b+ =

√
supx≥0 x

2f ∗(x).

a) Derive a ratio-of-uniforms method for simulating a random variable Y having density
proportional to

f ∗(y) =

{
1

(y+1)2
, y ≥ 0

0, y < 0

including an efficient method for simulating X1, X2 uniformly from the set C.

Problem 3

Assume that xi, i = 1, 2, . . . , n, are iid uniformly distributed on the interval from 0 to b
and that yi, i = 1, 2, . . . , n, conditional on x = (x1, x2, . . . , xn) are independently N(xi, σ

2)
distributed. We only observe y = (y1, y2, . . . , yn) as shown in Fig. 1. Given these observation,
using improper scale prior π(b) ∝ 1

b
and π(σ2) ∝ 1

σ2 on b > 0 and σ2 > 0, we want to construct a
Gibbs sampler to sample from the joint posterior distribution of b, σ2, x1, x2, . . . , xn conditional
on the observed data y, updating each of these unknown quantities one at the time. Asumme
that the posterior is proper.

a) What is the full conditional of σ2, that is the the distribution of σ2 conditional on the
data y, x and b?
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Figure 1: Histogram of the n = 200 observations y1, y2, . . . , yn.

b) Similarly, what is the conditional distribution of each xi, conditional on all other quan-
tities in the model? Derive a method for simulating from this distribution.

c) What is the conditional density of b, again conditioning on the remaining quantities?
Find a method to simulate from this distribution.

d) Briefly discuss what you see in Fig. 2 and reasons why the Gibbs sampler based on the
update rules in point a) to c) may have a slow rate of convergence.

Conditional on only σ2 and b, explain why y1, y2, . . . , yn are independent and show that
each yi has marginal densities given by

π(yi|b, σ2) =
1

b

(
Φ
(yi
σ

)
− Φ

(yi − b

σ

))
where Φ is the cdf of the standard normal distribution. Briefly discuss how you may
exploit this to construct a more efficient way of sampling from the posterior distribution
of b and σ.

Finally, what is the limiting value of the likelihood for b and σ2 as b → 0? Given the
above choice of prior, is the posterior proper?
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Figure 2: Trace plots and kernel density estimates of the marginal posteriors of b, σ and x(n) =
max(x1, x2, . . . , xn) when running the Gibbs sampler in problem 2a-c for 1000 iterations for the data
shown in Fig. 1.
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Figure 3: Observations x1, x2, . . . , x200 from the Poisson mixture described in the main text.

Problem 4

Suppose that we observe an iid sample x1, x2, . . . , xn from a Poisson mixture with probability
mass function

f(x) = (1− p)
µx
0e

−µ0

x!
+ p

µx
1e

−µ1

x!

as shown in Fig. 3. We would like to derive an expectation-maximization algorithm for com-
puting the maximum likelihood estimates of p, µ1, µ2.

Note first that the model is equivalent to assuming that xi|zi ∼ Pois(µzi) where zi
iid∼ Bernoulli(p),

i = 1, 2, . . . , n, are “missing” unobserved variables.

a) Write down the full data likelihood and its logarithm l(p, µ0, µ1;x, z) had both x =
(x1, x2, . . . , xn) and z = (z1, z2, . . . , zn) been observed.

b) Derive expressions for

w
(t)
i = E(zi|xi, p

(t), µ
(t)
0 , µ

(t)
1 )

and
Q(p, µ0, µ1 | p(t), µ(t)

0 , µ
(t)
1 ) = E(l(p, µ0, µ1;x, z) | x, p(t), µ(t)

0 , µ
(t)
1 )

(the E-step of the algorithm) where superscripts (t) indicates values at the t’th iteration.

c) Find p(t+1), µ
(t+1)
0 , µ

(t+1)
1 by maximizing Q with respect to p, µ0, µ1 (the M-step of the

algorithm).
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d) Explain in detail how you would estimate standard errors of the MLEs using parametric
bootstrapping. Are there any issues with indentifiability of the above model? If so,
how can the model be modified to make it identifiable and how would you modify the
EM-algorithm to obtain MLEs for the modified model?


