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Problem 1 Suppose that X has cumulative distribution

0, x <0
Flz)=<¢yx, 0<z<1
1, x> 1.

a) Find the expected value and variance of X. Suppose that we were to estimate the
expected value of X using Monte-Carlo integration. How would you simulate realisations
of X7 Using the known variance of X, calculate the true variance of the Monte-Carlo
estimator of KX if the estimator is based on n = 1000 realizations X, X5, ..., X,,. Find
the same variance if the Monte-Carlo estimator is additionally based on 1000 antithetic
realisations X7, X5,..., X

Problem 2

The ratio-of-uniforms method involves simulating X; and X, uniformly from a set C' =
{(z1,22) : 0 <y </ f*(xo/x1)}. It follows that C' C [0,a] x [b_,by] where a = sup, \/ f*(x),
bo = —\/sup,<o22f*(x) and by = \/sup,q 22 f*(z).

a) Derive a ratio-of-uniforms method for simulating a random variable Y having density

proportional to
1
f(y) = {<y+1>2’ y=0

0, y <0

including an efficient method for simulating X;, X5 uniformly from the set C.

Problem 3
Assume that x;, ¢« = 1,2,...,n, are iid uniformly distributed on the interval from 0 to b
and that y;, i = 1,2,...,n, conditional on x = (z1,9,...,7,) are independently N (z;,0?)

distributed. We only observe y = (y1,¥s, ..., ¥y,) as shown in Fig. 1. Given these observation,
using improper scale prior 7 (b) o 3 and 7(0?) o< 2 on b > 0 and 02 > 0, we want to construct a
Gibbs sampler to sample from the joint posterior distribution of b, 02, x1, 2, . . ., ¥, conditional
on the observed data y, updating each of these unknown quantities one at the time. Asumme
that the posterior is proper.

a) What is the full conditional of o2, that is the the distribution of ¢ conditional on the
data y, x and b?
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b)

c)

d)
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Figure 1: Histogram of the n = 200 observations y1,y2, ..., Yn.

Similarly, what is the conditional distribution of each x;, conditional on all other quan-
tities in the model? Derive a method for simulating from this distribution.

What is the conditional density of b, again conditioning on the remaining quantities?
Find a method to simulate from this distribution.

Briefly discuss what you see in Fig. 2 and reasons why the Gibbs sampler based on the
update rules in point a) to ¢) may have a slow rate of convergence.

Conditional on only o2 and b, explain why 91, ¥s, ..., ¥y, are independent and show that
each y; has marginal densities given by

Ly Vi yi — b
b, o2 :—<CI>— —<I>—)
m(yilb, 0%) = 7 (®(5) — (5——)
where @ is the cdf of the standard normal distribution. Briefly discuss how you may
exploit this to construct a more efficient way of sampling from the posterior distribution
of b and o.

Finally, what is the limiting value of the likelihood for b and o? as b — 0?7 Given the
above choice of prior, is the posterior proper?
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Figure 2: Trace plots and kernel density estimates of the marginal posteriors of b, o and z(,) =
max(x1,x2,...,%,) when running the Gibbs sampler in problem 2a-c for 1000 iterations for the data
shown in Fig. 1.
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Figure 3: Observations x1,x2, ...,z from the Poisson mixture described in the main text.

Problem 4

Suppose that we observe an iid sample x1, xs, ..., x, from a Poisson mixture with probability

mass function
mef.u'o xeiul
) Ho 1 p/h
z! z!

flz)=(1-p

as shown in Fig. 3. We would like to derive an expectation-maximization algorithm for com-
puting the maximum likelihood estimates of p, 1, .

Note first that the model is equivalent to assuming that x;|z; ~ Pois(u.,) where z; S Bernoulli(p),
1=1,2,. , are “missing” unobserved variables.

a) Write down the full data likelihood and its logarithm [(p, o, p11;%,2) had both x =
(x1,29,...,2,) and z = (21, 22, . . ., 2,) been observed.

b) Derive expressions for

®)

w = Bzilzi, p®, n p)

a,uo y M

and
Qp, o, i | PO, 1, 1) = EUp, po, i x,2) | %, p0, ), ")

(the E-step of the algorithm) where superscripts (¢) indicates values at the ¢’th iteration.

c) Find pt+) u(tH) (t+1) by maximizing ) with respect to p, ug, 1 (the M-step of the
algorithm).
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d) Explain in detail how you would estimate standard errors of the MLEs using parametric
bootstrapping. Are there any issues with indentifiability of the above model? If so,
how can the model be modified to make it identifiable and how would you modify the
EM-algorithm to obtain MLEs for the modified model?



