
TMA4300, June 2024, solution Page 1 of 6

Problem 1

a) X can be generated using the inversion method by setting X = U2 where U ∼ unif(0, 1).
Thus, EX = E(U2) = 1/3, E(X2) = E(U4) = 1/5 and VarX = 1/5− 1/9 = 4/45. The
Monte-Carlo estimator of EX is given by µ̂ = 1

n

∑1000
i=1 Xi which has variance 4/45000 ≈

8.9 · 10−5. Antithetic realizations of X can be obtained by setting X∗ = (1− U)2. This

gives E(XiX
∗
i ) = E(U2(1− U)2) =

∫ 1

0
u2 − 2u3 + u4du = 1/3− 1/2 + 1/5 = (10− 15 +

6)/30 = 1/30, Cov(Xi, X
∗
i ) = 1/30 − 1/9 = (3 − 10)/90 = −7/90 and corr(Xi, X

∗
i ) =

−7/8. The variance of the Monte-Carlo estimator using antithetic sampling is thus
reduced by a factor of 16 to

Var

(
1

2n

1000∑
i=1

(Xi +X∗
i )

)
= · · · = Var(Xi)

2 · 1000
(1 + corr(Xi, X

∗
i ) = 5.5 · 10−6.

Problem 2

a) It follows that b− = −
√
supx≤0 x

2f ∗(x) = 0. In addition, x1 ≤
√

f ∗(x2/x1) =
1

x2/x1+1
=

x1

x1+x2
implies C is given by the inequalities x1 + x2 < 1, x1 ≥ 0 and x2 ≥ b− =

0. An efficient method for simulating uniformly from inside this region is to simulate

x1, x2
iid∼ unif(0, 1) and then reflect x1, x2 about the line x1 + x2 = 1 if x1 + x2 > 1 by

setting x2 = 1 − x1 and x1 = 1 − x2. Finally, set y = x2/x1.. Alternative, slightly
less efficient methods are rejection sampling or first simulating x1 from its triangular
marginal distribution and then x2|x1 ∼ unif(0, 1− x1).

Problem 3

a) The conditional density of σ2 becomes

π(σ2|x,y, b) ∝ π(σ2)
n∏

i=1

π(yi|xi, σ
2)

∝ 1

σ2

1

(σ2)n/2
exp(− 1

2σ2

n∑
i=1

(yi − xi)
2)

∝ 1

(σ2)n/2+1
exp(− 1

2σ2

n∑
i=1

(yi − xi)
2)

which is an inverse Gamma distribution with shape parameter α = n/2 and scale pa-
rameter 1/β = 1

2

∑n
i=1(yi − xi)

2 (or rate parameter β = 2/
∑n

i=1(yi − xi)
2) . Using the

inversion method we can thus simulate σ2 by setting σ2 = 1/F−1
Γ (U ;α, β) where F−1

Γ is
the quantile function of the gamma distribution.
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b) The conditional density each xi,

π(xi|y,x−i, σ, b) ∝ π(xi|b)π(yi|xi, σ)

∝ e−
1

2σ2 (yi−xi)
2

I(0 < xi < b),

that is, xi has normal distribution with mean yi, standard deviation σ truncated below
0 and above b. Introducing Z ∼ N(yi, σ

2), the cdf of the full conditional of xi can be
expressed as

Fxi|...(x) = P (Xi ≤ x | . . . )
= P (Z ≤ x | 0 < Z ≤ b)

=
P (Z ≤ x ∩ 0 < Z ≤ b)

P (0 < Z ≤ b)

=
P (0 < Z ≤ x)

P (0 < Z ≤ b)

=
Φ(x−yi

σ
)− Φ(−yi

σ
)

Φ( b−yi
σ

)− Φ(−yi
σ
)

for 0 ≤ x ≤ b. Using the inversion method, solving U = Fxi|...(Xi) for Xi, gives

Xi = yi + σΦ−1

(
Φ(−yi

σ
) +

(
Φ(

b− yi
σ

)− Φ(−yi
σ
)
)
U

)
.

An alternative method of simulation is Box-Muller (or any other methods for simulating
from the normal distribution) followed by rejection of samples outside (0, b). In cases
where σ ≪ b so that the rejection probability is mostly small, this method may be just as
efficient as the above inversion method as it avoids somewhat costly evaluation of both
Φ−1 and Φ.

c) The conditional density of b becomes

π(b|x,y, σ2) ∝ π(b)
n∏

i=1

π(xi|b)

=
1

b
I(b > 0)

n∏
i=1

1

b
I(0 < xi ≤ b)

= b−(n+1)I(b ≥ x(n))

where x(n) is the maximum of the current values of x1, x2, . . . , xn. This may be recognised
as the Pareto distribution with scale parameter x(n) and shape parameter n.
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The cdf is

Fb|...(b) =

∫ b

x(n)
t−(n+1)dt∫∞

x(n)
b−(n+1)db

=
b−n − x−n

(n)

0− x−n
(n)

= 1−
(x(n)

b

)n
.

Equating this to U and solving for b gives the inversion method b = x(n)(1− U)−1/n.

d) The trace plots of b and x(n) shows that both of these parameters changes slowly with
autocorrelation time of about 100 iterations. It is also clear that b and x(n) have a strong
posterior correlation. This explains why the Gibbs sampler will have a slow rate of
convergence since b and x(n) can make small steps when b and x are updated separately
using their current conditional distribution.

Using the law of total probability, and making the substitution u = xi−yi
σ

,

π(yi|b, σ2) =

∫ b

0

π(yi|xi, σ
2)π(xi|b)dxi

=
1

b

∫ b

0

1√
2πσ

exp(− 1

2σ2
(yi − xi)

2)dxi

=
1

b

∫ b−yi
σ

− yi
σ

1√
2π

e−u2

du

=
1

b

(
Φ
(b− yi

σ

)
− Φ

(
− yi

σ

))
=

1

b

(
1− Φ

(yi − b

σ

)
− 1 + Φ

(yi
σ

))
=

1

b

(
Φ
(yi
σ

)
− Φ

(yi − b

σ

))
We can thus omit x1, x2, . . . , xn from the MCMC sampler since the marginal posterior
density of b and σ2 can be written in closed form as

π(b, σ2|y) ∝ π(σ2)π(b)
n∏

i=1

π(yi|b, σ2)

To sample from this density, standard random-walk Metropolis-Hastings with e.g. a bi-
variate normal proposal may be used. Fig. 2 suggests using proposal standard deviations
for both b and σ2 somewhere around 0.5.
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In the limit as b → 0, each factor π(yi|b, σ2) tends to a Gaussian density with mean
zero and standard deviation σ, that is, ϕ(yi/σ)/σ, since the underlying xi are then just
constants equal to zero. More formalistically, we have

lim
b→0

1

b

(
Φ
(b− yi

σ

)
− Φ

(
− yi

σ

))
= lim

b→0

1

b

(
Φ
(t+ b− yi

σ

)
− Φ

(t− yi
σ

)) ∣∣∣
t=0

=
d

dt
Φ
(t− yi

σ

)∣∣∣
t=0

=
1

σ
ϕ(−yi/σ)

by definition of the derivative and by the chain rule. The whole likelihood thus tends to
a positive limit, say a, that is, for any ϵ > 0 we can find a b > 0 such that∣∣∣∣∣

n∏
i=1

π(yi|b, σ2)− a

∣∣∣∣∣ < ϵ.

Thus,
∏n

i=1 π(yi|b, σ2) > a− ϵ = c where c > 0 is a constant that may depend on σ2 and∫ b

0

(
π(σ2)π(b)

n∏
i=1

π(yi|b, σ2)

)
db >

∫ b

0

1

σ2b
c db = ∞

for some constants b > 0 and c > 0. This holds for a continuum of σ2 values. The target
density does thus not have a finite normalizing constant and, although not evident from
trace plot, the posterior is therefore improper. See Hobert and Casella (1996) for a
similar example.

https://www.jstor.org/stable/2291572
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Problem 4

a) The full data likelihood is

L(p, µ0, µ1;x, z) =
n∏

i=1

f(xi, zi)

=
n∏

i=1

f(xi|zi)f(zi)

=
n∏

i=1

e−µziµxi
zi

xi!
pzi(1− p)1−zi

and its log

l(p, µ0, µ1;x, z) =
n∑

i=1

(
xi lnµzi − µzi − lnxi! + zi ln p+ (1− zi) ln(1− p)

)
b) Conditional on xi and the current values of the model parameters, it follows from Bayes

theorem that

w
(t)
i = E(zi | xi, p

(t), µ
(t)
0 , µ

(t)
1 )

= P (zi = 1|xi, . . . )

=
P (xi | zi = 1, ...)P (zi = 1 | . . . )

P (xi | zi = 0, ...)P (zi = 0 | . . . ) + P (xi | zi = 1, . . . )P (zi = 1 | . . . )

=
(µ

(t)
1 )xie−µ

(t)
1 p(t)

(µ
(t)
0 )xie−µ

(t)
0 (1− p(t)) + (µ

(t)
1 )xie−µ

(t)
1 p(t)

.

In terms of these weights, keeping in mind that µzi is a binary random variable taking

values of either µ0 or µ1 with probabilites 1− w
(t)
I and w

(t)
I , respectively,

Q(p, µ0, µ1 | p(t), µ(t)
0 , µ

(t)
1 )

=
n∑

i=1

(1− w
(t)
i )(xi lnµ0 − µ0) + w

(t)
i (xi lnµ1 − µ1)− lnxi! + w

(t)
i ln p+ (1− w

(t)
i ) ln(1− p)

c) Setting the partial derivatives equal to zero gives,

∂Q

∂p
=

1

p

n∑
i=1

w
(t)
i − 1

1− p

n∑
i=1

(1− w
(t)
i ) = 0
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which solved for p yields

p(t+1) =
1

n

n∑
i=1

w
(t)
i ,

and similarly,
∂Q

∂µ1

=
1

µ1

n∑
i=1

w
(t)
i xi −

n∑
i=1

w
(t)
i = 0

which yields,

µ
(t+1)
1 =

∑n
i=1w

(t)
i xi∑n

i=1 w
(t)
i

.

Symmetry implies that

µ
(t+1)
0 =

∑n
i=1(1− w

(t)
i )xi∑n

i=1(1− w
(t)
i )

.

d) Having obtained MLEs p̂, µ̂0, µ̂1 by applying the EM-algorithm to the original data,
parametric bootstrapping is done by generating B bootstrap samples yb, b = 1, 2, . . . , B.
To simulate each observation ybi we would first simulate zi ∼ Bernoulli(p̂) and then
ybi ∼ Poisson(µ̂zbi

). Applying the EM-algorithm to each bootstrap sample we obtain

bootstrap replicates p̂b, µ̂b
0, µ̂

b
1 of the MLEs. Standard errors can then be estimated by

the sample standard deviations of these bootstrap replicates.

The model is not identifiable since the distribution of the data is the same if the param-
eters are p, µ0, µ1 and

p′ = 1− p, (1)

µ′
0 = µ1, (2)

µ′
1 = µ0 (3)

respectively. To make the model identifiable, we can impose some additional restrictions
on the parameters, for example, the restriction that µ0 ≤ µ1. To fit the model with
this restriction on the parameters, we could use the above algorithm but apply the
transformation (1) in cases where the final MLEs µ̂0 > µ̂1. Alternatively, one could
impose the constraint p ≤ 1/2.


