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Problem 1

a) The cumulative distribution function becomes

F (x) =

∫ x

0

f(u)du =

∫ x

0

2αue−αu2

du =
[
−e−αu2

]x
0
= 1− e−αx2

Finds the corresponding inverse function by solving u = F (x) with respect to x.

1− e−αx2

= u

−αx2 = ln(1− u)

x =

√
− 1

α
ln(1− u)

Thus, we can generate a sample from f(x) by

1. Generate u ∼ Unif[0, 1].

2. Compute

x = F−1(u) =

√
− 1

α
ln(1− u).

b) The proposal distribution is given to be

g(x) = λe−λx, x > 0.

The acceptance probability must then be

γ(x) = c
f(x)

g(x)
=

2cα

λ
xeλx−αx2

,

where c is a constant that must be decided. Differentiate with respect to x to find the
maximal value of γ(x).

γ′(x) =
2cα

λ

[
eλx−αx2

+ xeλx−αx2

(λ− 2αx))
]
=

2cα

λ
eλx−αx2

(1 + λx− 2αx2).
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Equating this to zero we get
2αx2 − λx− 1 = 0

x =
λ±

√
λ2 + 8α

4α
.

Only positive values of x is of interest for us so we get

x =
λ+

√
λ2 + 8α

4α
.

This must give a maximum for γ(x) as γ(x) > 0 for all x > 0 and γ(0) = 0 = limx→∞ α(x).
Thus, defining

x0 =
λ+

√
λ2 + 8α

4α
,

the maximal value for γ(x) becomes

γ(x0) =
2cα

λ
x0e

λx0−αx2

0 .

Equating this maximal value to 1 and solving for c we get

c =
λ

2α
e−λx0+αx2

0 ,

which gives acceptance probability

γ(x) = x exp
{
λ(x− x0)− α(x2 − x20)

}
.

Thus, we can generate a sample from f(x) by

1. Generate x ∼ Exponential(λ).

2. Compute

x0 =
λ+

√
λ2 + 8α

4α

and
γ = x exp

{
λ(x− x0)− α(x2 − x20)

}
.

3. Generate u ∼ Unif[0, 1].

4. If u ≤ γ return x as the realisation, otherwise goto 1.
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The expected number of tries per acceptance is equal to c, so to find the optimal value for
λ we need to maximise c with respect to λ. Thus, we need to solve the equation

∂c

∂λ
= 0

with respect to λ.

c) One possibility is to adopt the random number generator in item a) and obtain antithetic
variates by defining

Xi =

√
− 1

α
ln(1− Ui) and Yi =

√
− 1

α
ln(Ui)

for i = 1, . . . , n. When Ui is uniformly distributed on [0, 1], 1 − Ui will also be uniformly
distributed on [0, 1], so Xi and Yi are both distributed according to f(x). Clearly Xi and
Yi are negatively correlated. Thus, we can define

θ̃ =
1

2n

n∑

i=1

(Xi + Yi).

[An alternative solution to the problem is to define a control variate. Again adopting the
random number generator in a) one can use either u − 1 or − ln(1 − u) − 1 as a control
variate. Both of these control variates has mean zero.]

Problem 2

a) The graphical model becomes

✒✑
✓✏
x1 ✲
✁
✁
✁✁✕

✒✑
✓✏
x2 ✲
✁
✁
✁✁✕

❆
❆
❆❆❑

✒✑
✓✏
x3 ✲
✁
✁
✁✁✕

❆
❆
❆❆❑

✒✑
✓✏
x4 ✲
✁
✁
✁✁✕

❆
❆
❆❆❑

· · · ✲
✁
✁
✁✁✕

✒✑
✓✏
xn

❆
❆

❆❆❑
✒✑
✓✏
y2 ✒✑

✓✏
y3 ✒✑

✓✏
y4 ✒✑

✓✏
yn

and the posterior distribution becomes

π(x|y) = π(x)π(y|x)
π(y)

∝ π(x)π(y|x)

∝ p(x1)
n∏

i=2

p(xi|xi−1)
n∏

i=2

[
1√

σ2(xi)
exp

{
−1

2

(yi − (v(xi)− v(xi−1)))
2

σ2(xi)

}]
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Use the Gibbs sampler algorithm, i.e. use as proposal distribution the full conditional for
a randomly chosen node, xi. For i > 1, the full conditional distribution for xi becomes

π(xi|y, x−i) ∝ π(x|y) ∝ p(xi|xi−1)p(xi+1|xi)
1√

σ2(xi)

· exp
{
−1

2

[
(yi − (v(xi)− v(xi−1)))

2

σ2(xi)
+

(yi+1 − (v(xi+1)− v(xi)))
2

σ2(xi+1)

]}
.

For i = 1 the expression becomes

π(x1|x−1, y) ∝ π(x|y) ∝ p(x1)p(x2|x1) exp
{
1

2

(y2 − (v(x2)− v(x1)))
2

σ2(x2)

}
.

As we use a Gibbs sampler the acceptance probability becomes equal to one. Pseudo code
for the algorithm is as follows.

1. Draw initial values for x0 = (x01, . . . , x
0
n)

T

2. Iterate for t = 1, 2, . . .

(a) Draw what node to update, i ∼ Unif(1, . . . , n).

(b) Draw new value xti ∼ π(xti|xt−1

−i , y) and set xtj = xt−1

j for j 6= i.

b) First one needs to find the length of the burn-in phase of the chain. This can be done
by output analysis. Assume the Markov chain has (essentially) converged after T < M
iterations. The posterior probability for rock type k in node i is then estimated by

α̂ik =
1

M − T + 1

M∑

t=T

I(xti = k),

where I(·) is the indicator function. The posterior expected fraction of nodes with rock
type k is

βk = E

[
1

n

n∑

i=1

I(xi = k)

∣∣∣∣∣ y
]

and this is estimated by

β̂k =
1

(M − T + 1)n

n∑

i=1

M∑

t=T

I(xti = k).

Finally, the posterior probability for the fraction of nodes with rock type k is larger than a
given threshold r is

γk(r) = P

(
1

n

n∑

i=1

I(xi = k) > r

∣∣∣∣∣ y
)
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and the corresponding estimate becomes

γ̂k(r) =
1

M − T + 1

M∑

t=T

I

(
1

n

n∑

i=1

I(xti = k) > r

)
.

Problem 3

a) As the data that are used to estimate the prediction error also have been used to estimate
the regression model the estimated prediction errors will tend to be too small. Thus, the
apparent prediction error is biased and gives a too optimistic estimate for θ.

Cross validation can be used to avoid using the same data to estimate the prediction
error as was used to estimate the regression model. Leave-one-out cross validation is de-
scribed by the following. Let β̂−i denote the estimator for β based on all the data except
data i, i.e.

β̂−i = argmin
b




∑

j 6=i

(yj −m(b, xj))
2



 .

The leave-one-out cross validation estimator for θ is then

θ̂cv =
1

n

n∑

i=1

(
yi −m(β̂−i, xi)

)2
.

b) Let F denote the (joint) distribution of x and y. The prediction error θ is then a function
of F , so we write θ = θ(F ). To stress the dependence of the apparent error rate on the
data we write

θ̂a = θ̂a((x1, y1), . . . , (xn, yn)).

The bias of θ̂a is then defined as

biasF (θ̂a, θ) = EF (θ̂a((x1, y1), . . . , (xn, yn))− θ(F ).

The ideal bootstrap estimator for the bias is obtained by adopting the plug-in principle,

b̂ias = E
F̂
(θ̂a((x

⋆
1, y

⋆
1), . . . , (x

⋆
n, y

⋆
n))− θ(F̂ ),

where F̂ is a discrete distribution giving probability 1/n to each of (x1, y1), . . . , (xn, yn).
For each of i = 1, . . . , n, the number of possible states for (x⋆i , y

⋆
i ) is n. Thereby the

number of possible states for ((x⋆1, y
⋆
1), . . . , (x

⋆
n, y

⋆
n)) is nn and the above expectation is given

by a sum of nn terms. Thus, the is not pratical to evaluate the expectation except when n
is small.
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Pseudo code for estimating the ideal bootstrap estimator:

1. Generate B sets of bootstrap samples ((xb⋆1 , yb⋆1 ), . . . , (xb⋆n , yb⋆n )), b = 1, . . . , B, where
(xb⋆i , yb⋆i ) for b = 1, . . . , B and i = 1, . . . , n are sampled independently (with replace-
ment) from (x1, y1), . . . , (xn, yn).

2. Evaluate the bootstrap sample estimates,

β̂b⋆ = argmin
b

{
n∑

i=1

(yb⋆i −m(b, xb⋆i ))2

}

and

θb⋆a =
1

n

n∑

i=1

(
yb⋆i −m(β̂b⋆, xb⋆i )

)2

for b = 1, . . . , B.

3. Approximate the bootstrap expectation E
F̂
(θ̂a((x

⋆
1, y

⋆
1), . . . , (x

⋆
n, y

⋆
n)) by

θ̂a(·) =
1

B
=

B∑

b=1

θ̂b⋆a

and approximate θ(F̂ ) by

̂
θ(F̂ ) =

1

B

B∑

b=1

[
1

K

K∑

k=1

(yk⋆0 −m(β̂b⋆, xk⋆0 ))2

]
,

where (xk⋆0 , yk⋆0 ), k = 1, . . . ,K are sampled independently (with replacement) from
(x1, y1), . . . , (xn, yn).

4. Approximate the ideal bootstrap estimator with

biasB = θ̂a(·)− ̂
θ(F̂ ).

c) The bias corrected estimate for θ is

θ̂bc = θ̂a −
[
θ̂a(·)− ̂

θ(F̂ )

]
.

As discussed in a), we expect θ̂a to have a strong bias. We can expect the bias corrected
estimator to be approximately unbiased. However, the uncertainty in the estimated bias
gives that Var[θ̂bc] is somewhat larger than Var[θ̂a]. In total the bias corrected estimator is
preferable (because the bias of θ̂a is large).
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