

TMA4300 Mod. stat. metoder

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Løsningsforslag - Eksamen mai 2009

Problem 1

a) We have

$$f(x;\mu) = \frac{\tau}{\sqrt{2\pi}} \exp\left\{-\frac{\tau^2}{2} \left(x^2 - 2x\mu + \mu^2\right)\right\}$$
$$= \frac{\tau \exp\left\{-\frac{\tau^2 x^2}{2}\right\}}{\sqrt{2\pi}} \exp\left\{\mu \tau^2 x - \frac{\tau^2 \mu^2}{2}\right\}$$

Thus, we may choose for example

$$a(x) = \frac{\tau \exp\left\{-\frac{\tau^2 x^2}{2}\right\}}{\sqrt{2\pi}}$$
, $\phi(\mu) = \mu$, $t(x) = \tau^2 x$ and $b(\mu) = -\frac{\tau^2 \mu^2}{2}$.

The conjugate prior distribution becomes

$$\pi(\mu) \propto \exp \left\{ \phi(\mu)\alpha + b(\mu)\beta \right\} = \exp \left\{ \mu\alpha - \frac{\tau^2\mu^2}{2}\beta \right\}$$

We see that the exponent is a second order function of μ . Thus, the conjugate prior is a normal distribution.

b) With

$$\pi(\mu) = \frac{r}{\sqrt{2\pi}} \exp\left\{-\frac{r^2}{2} (\mu - \nu)^2\right\}$$

the posterior distribution becomes

$$\pi(\mu|x_1,\dots,x_n) \propto \pi(\mu) \prod_{i=1}^n f(x_i;\mu) \propto \exp\left\{-\frac{r^2}{2}(\mu-\nu)^2 - \sum_{i=1}^n \frac{\tau^2}{2}(x_i-\mu)^2\right\}$$
$$= \exp\left\{-\frac{r^2}{2}(\mu^2 - 2\mu\nu + \nu^2) - \frac{\tau^2}{2}\sum_{i=1}^n (x_i^2 - 2x_i\mu + \mu^2)\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[\left(r^2+n\tau^2\right)\mu^2-2\left(r^2\nu+\tau^2\sum_{i=1}^nx_i\right)\mu\right]\right\}.$$

As expected from the results in **a**) we see that this is a normal distribution. To find $\mathrm{E}[\mu|x_1,\ldots,x_n]$ and $\mathrm{Var}[\mu|x_1,\ldots,x_n]$ define $\widetilde{\nu}=\mathrm{E}[\mu|x_1,\ldots,x_n]$ and $\widetilde{r}^2=1/\mathrm{Var}[\mu|x_1,\ldots,x_n]$. We then must have

$$\pi(\mu|x_1,\ldots,x_n) \propto \exp\left\{-\frac{\widetilde{r}^2}{2} (\mu-\widetilde{\nu})^2\right\} \propto \exp\left\{-\frac{1}{2} \left[\widetilde{r}^2 \mu^2 - 2\widetilde{r}^2 \widetilde{\nu} \mu\right]\right\}.$$

Thus, we must have

$$\widetilde{r}^2 = r^2 + n\tau^2$$
 and $\widetilde{r}^2 \widetilde{\nu} = r^2 \nu + \tau^2 \sum_{i=1}^n x_i$.

Solving with respect to $\widetilde{\nu}$ and \widetilde{r}^2 we get

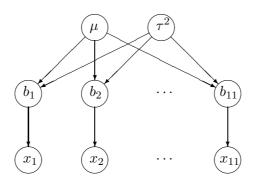
$$\widetilde{\nu} = \frac{r^2 \nu + \tau^2 \sum_{i=1}^n x_i}{r^2 + n\tau^2}$$
 and $\widetilde{r}^2 = r^2 + n\tau^2$

and we get

$$\underline{\mathbf{E}[\mu|x_1,\dots,x_n]} = \frac{r^2\nu + \tau^2 \sum_{i=1}^n x_i}{r^2 + n\tau^2} \text{ and } Var[\mu|x_1,\dots,x_n] = \frac{1}{r^2 + n\tau^2}.$$

Problem 2

a) The graphical model becomes



The full posterior distribution for μ is

$$\pi(\mu|\tau^2, b_1, \dots, b_{11}, x_1, \dots, x_{11}) \propto \pi(\mu) \prod_{i=1}^{11} \pi(b_i; \mu, \tau^2),$$

where $\pi(\mu)$ is a $N(\nu, 1/r^2)$ distribution and $\pi(b_i; \mu, \tau^2)$ is a $N(\mu, 1/\tau^2)$ distribution. This is the same situation as discussed in Problem 1, except the x_1, \ldots, x_n in Problem 1 is now replaced by b_1, \ldots, b_{11} . Thus, we have

$$\mu | \tau^2, b_1, \dots, b_{11}, x_1, \dots, x_{11} \sim N\left(\frac{r^2\nu + \tau^2 \sum_{i=1}^{11} b_i}{r^2 + 11\tau^2}, \frac{1}{r^2 + 11\tau^2}\right).$$

Using this as a proposal distribution is a Gibbs step, in which case the acceptance probability becomes equal to one.

The full conditional distribution for τ^2 becomes

$$\pi(\tau^{2}|\mu, b_{1}, \dots, b_{11}, x_{1}, \dots, x_{11}) \propto \pi(\tau^{2}) \prod_{i=1}^{11} \pi(b_{i}|\mu, \tau^{2})$$

$$\propto (\tau^{2})^{\alpha - 1} \exp\left\{-\frac{\tau^{2}}{\beta}\right\} \prod_{i=1}^{11} \tau \exp\left\{-\frac{\tau^{2}}{2}(b_{i} - \mu)^{2}\right\}$$

$$= (\tau^{2})^{\alpha + 11/2 - 1} \exp\left\{-\frac{\tau^{2}}{\left(1/\beta + \frac{1}{2}\sum_{i=1}^{11}(b_{i} - \mu)^{2}\right)^{-1}}\right\}$$

Comparing this expression with the density of a gamma distribution we see that this is a gamma distribution with parameters

$$\widetilde{\alpha} = \alpha + \frac{11}{2}$$
 and $\widetilde{\beta} = \frac{1}{\frac{1}{\beta} + \frac{1}{2} \sum_{i=1}^{11} (b_i - \mu)^2}$.

b) The density of the proposal distribution is

$$q(\widetilde{b}_i|b_i) = \begin{cases} \frac{1}{2a} & \text{for } \widetilde{b}_i \in [b_i - a, b_i + a], \\ 0 & \text{otherwise.} \end{cases}$$

The acceptance probability is only of interest when $\tilde{b}_i \in [b_i - a, b_i + a]$, in which case $q(\tilde{b}_i|b_i) = 1/(2a) = q(b_i|\tilde{b}_i)$ and the acceptance probability becomes

$$\alpha(\widetilde{b}_{i}|b_{i}) = \min \left\{ 1, \frac{\pi(b_{1}, \dots, b_{i-1}, \widetilde{b}_{i}, b_{i+1}, \dots, b_{11}, \mu, \tau^{2}|x_{1}, \dots, x_{11})}{\pi(b_{1}, \dots, b_{i-1}, b_{i}, b_{i+1}, \dots, b_{11}, \mu, \tau^{2}|x_{1}, \dots, x_{11})} \cdot \frac{q(b_{i}|\widetilde{b}_{i})}{q(\widetilde{b}_{i}|b_{i})} \right\}$$

$$= \min \left\{ 1, \frac{\pi(\widetilde{b}_{i}|\mu, \tau^{2})\pi(x_{i}|\widetilde{b}_{i})}{\pi(b_{i}|\mu, \tau^{2})\pi(x_{i}|b_{i})} \right\}$$

$$= \underline{\min} \left\{ 1, \exp \left\{ -\frac{\tau^2}{2} \left(\left(\widetilde{b}_i - \mu \right)^2 - (b_i - \mu)^2 \right) \right\} \frac{\widetilde{p}_i^{x_i} (1 - \widetilde{p}_i)^{n_i - x_i}}{p_i^{x_i} (1 - p_i)^{n_i - x_i}} \right\},$$

where $p_i = 1/(1 + e^{b_i})$ and $\tilde{p}_i = 1/(1 + e^{\tilde{b}_i})$.

With proposal distribution $\widetilde{b}_i \sim \text{Unif}[b_i - 2a, b_i + a]$ the density of the proposal distribution becomes

$$q(\widetilde{b}_i|b_i) = \begin{cases} \frac{1}{3a} & \text{for } \widetilde{b}_i \in [b_i - 2a, b_i + a], \\ 0 & \text{otherwise.} \end{cases}$$

When $\tilde{b}_i \in [b_i - a, b_i + a]$ we then have $q(\tilde{b}_i|b_i) = 1/(3a) = q(b_i|\tilde{b}_i)$ and the acceptance probability is given by the same formula as above. When $\tilde{b}_i \in [b_i - 2a, b_i - a)$ we have $q(b_i|\tilde{b}_i) = 0$ and thereby $\alpha(\tilde{b}_i|b_i) = 0$. Thus, using computation time to propose values $\tilde{b}_i \in [b_i - 2a, b_i - a)$ is a waste of computing time.

c) Of the three values for a tried it is preferable to use a = 1.0 as the estimated auto-correlation function is falling the fastest in this case. For a = 4 we can also observe that the simulated Markov chain has a very low acceptance probability for b_1 , which is not a favourable property.

To decide the value of a one should also have studied corresponding plots for the other simulated values, b_2, \ldots, b_{11}, μ and τ^2 . It is also natural to monitor the acceptance rates (for the b_i 's) with the goal to get the acceptance rates close to 0.234.

- **d**) First one needs to find the length of the burn-in phase of the chain. This can be done by output analysis. Assume the Markov chain has (essentially) converged after T < M iterations.
 - 1. $E[p_i|x_1,\ldots,x_{11}]$ can then be estimated by

$$\widehat{\mathbf{E}}[p_i|x_1,\dots,x_{11}] = \frac{1}{M-T+1} \sum_{m=T}^{M} \frac{e^{b_i^m}}{1+e^{b_i^m}}$$

2. $\operatorname{Prob}(p_i < p_j | x_1, \dots, x_n)$ can be estimated by

$$\widehat{\text{Prob}}(p_i < p_j | x_1, \dots, x_n) = \frac{1}{M - T + 1} \sum_{m = T}^M I\left(\frac{e^{b_i^m}}{1 + e^{b_i^m}} < \frac{e^{b_j^m}}{1 + e^{b_j^m}}\right)$$
$$= \frac{1}{M - T + 1} \sum_{m = T}^M I\left(b_i^m < b_j^m\right)$$

3. $\operatorname{Prob}(p_i < \min_{j \neq i} p_j | x_1, \dots, x_{11})$ can be estimated by

$$\widehat{\text{Prob}}(p_i < \min_{j \neq i} p_j | x_1, \dots, x_n) = \frac{1}{M - T - 1} \sum_{m = T}^M I\left(b_i^m < \min_{j \neq i} b_j^m\right)$$

To find the best hospital given our data let us consider the outcome of a new surgery in each of the hospitals. Let y_i denote the result of the next surgery in hospital H_i , $y_i = 1$ if this surgery results in a death and $y_i = 0$ otherwise. To find the best hospital we then need to minimise

$$Prob(y_i = 1 | x_1, \dots, x_{11}) = \int_{-\infty}^{\infty} Prob(y_i = 1 | p_i, x_1, \dots, x_{11}) \pi(p_i | x_1, \dots, x_{11}) dp_i$$
$$= \int_{-\infty}^{\infty} Prob(y_i = 1 | p_i) \pi(p_i | x_1, \dots, x_{11}) dp_i = \int_{-\infty}^{\infty} p_i \pi(p_i | x_1, \dots, x_{11}) dp_i = E[p_i | x_1, \dots, x_{11}].$$

Thus, our estimated best hospital is the hospital with the lowest value for $\widehat{E}[p_i|x_1,\ldots,x_{11}]$.

Problem 3

a) Our estimated model is

$$x_i^{\star} \sim \text{bin}(n_i, \widehat{p}_i).$$

The bootstrap replication of \hat{p}_i becomes

$$\widehat{p}_i^{\star} = \frac{x_i^{\star}}{n_i}.$$

The ideal bootstrap estimator for the standard deviation of \hat{p}_i is thereby

$$\underline{\underline{\mathrm{SD}_{\widehat{F}_{\mathrm{par}}}[\widehat{p}_{i}^{\star}]}.}$$

Compute first the corresponding variance,

$$\operatorname{Var}_{\widehat{F}_{\operatorname{par}}}[\widehat{p}_{i}^{\star}] = \operatorname{Var}_{\widehat{F}_{\operatorname{par}}}\left[\frac{x_{i}^{\star}}{n_{i}}\right] = \frac{\operatorname{Var}_{\widehat{F}_{\operatorname{par}}}[x_{i}^{\star}]}{n_{i}^{2}} = \frac{n_{i}\widehat{p}_{i}(1-\widehat{p}_{i})}{n_{i}^{2}} = \frac{\widehat{p}_{i}(1-\widehat{p}_{i})}{n_{i}}.$$

The ideal bootstrap estimator for the standard deviation of \hat{p}_i is thereby

$$\operatorname{SD}_{\widehat{F}_{\operatorname{par}}}[\widehat{p}_i^{\star}] = \sqrt{\frac{\widehat{p}_i(1-\widehat{p}_i)}{n_i}}.$$

- b) The pseudo code becomes:
 - 1. For $b=1,\ldots,B$ and $i=1,\ldots,11$ generate $x_i^{\star b}\sim \text{bin}(n_i,\widehat{p}_i)$ independently.
 - 2. For $b = 1, \ldots, B$ and $i = 1, \ldots, 11$ compute

$$\widehat{p}_i^{\star b} = \frac{x_i^{\star b}}{n_i}.$$

- 3. For each of $b=1,\ldots,B$ order $\widehat{p}_1^{\star b},\ldots,\widehat{p}_{11}^{\star b}$ from smallest to largest and let $\widehat{r}_i^{\star b}$ denote the rank of $\widehat{p}_i^{\star b}$ for $i=1,\ldots,11$.
- 4. For each of $i=1,\ldots,11$ order $\hat{r}_i^{\star 1},\ldots,\hat{r}_i^{\star B}$ from smallest to largest and let $\hat{r}_i^{\star (k)}$ denote the k'th smallest value.
- 5. For each of i = 1, ..., 11, the $(1 \alpha) \cdot 100\%$ percentile interval for r_i is

$$\underline{[\widehat{r}_i^{\star(B\alpha/2)},\widehat{r}_i^{\star(B(1-\alpha/2))}]}.$$

That r_i takes only integer values is not important for the procedure except that it then requires that the interval is defined as a closed interval.