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Problem 1 Simulation

a) The Weibull distribution has cumulative function

F(z) =1—exp(—(z/N)*),2 >0,k >0,X>0.

Describe how to sample from the Weibull distribution by inversion (probability integral
transform).

The exponential distribution is a special case with £ = 1, while the Rayleigh distribution
has k = 2. Assume that we have used inversion to sample an exponential variable X with
parameter A. Use the inversion formula to show that ¥ = v/ AX is Rayleigh distributed.

The Rayleigh distribution is used to model the time until a component fails (life time analysis).
We are interested in the total time on test. Assume that 10 independent components are tested,
all with Rayleigh distributed life times X, ..., Xj0. The total time on test is T = X1+. ..+ Xo.
The distribution of T can be studied by simulation of the individual life times.

b) Describe the Monte Carlo method to estimate the median in the distribution of T, that
is m defined by [" f(t)dt = 0.5, where f(t) is the density of T'.
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Assume the testing is done by starting one component immediately after the previous com-
ponent fails. We have limited waiting capacity, and want to estimate the tail probability
p = P(T > 7), where 7 is a known constant related to the capacity. Often, p is small.

c¢) Describe the Monte Carlo method for computing an estimator p for p = P(T > 7).
What is the variance of p?

The coefficient of variation (CV) is defined by the standard deviation divided by the
mean. Find the CV for p, and sketch how it varies with p and the number of Monte
Carlo simulations.

d) We will next use importance sampling to estimate p. Assume the ten independent life
times are Rayleigh distributed with parameter A. We choose the exponential distribution
with parameter A\ to simulate individual, independent, life times X7, ..., Xio.

Find the importance sampling estimator of p using this approach.

Problem 2 Markov chain Monte Carlo

Let y; be the response variable at time ¢ = 1,...,n. Consider the linear regression model
y; = o + B1x; + €, where x; are known covariates at time i, 8 = (g, 41)" unknown regression
parameters, and ¢; Gaussian noise with variance o> = 1/q, ¢ > 0. Le. the precision of ¢; is
q. Because of external effects over time, the model allows the noise terms to be correlated:
Corr (e, €i4p) = oM, der 0 < ¢ < 1.

Let f(e) = N(¢0, %R) be the Gaussian density for the noise terms € = (ey,...,¢,)". The
correlation entails matrix elements (7,7) in R like R, ; = #l*=Il. In compact form, with data
v =(y1,...,yn)", we have

y=XB+e,
where X is a n x 2 matrix with 1s in the first column and x;s in the second. The likelihood is :
1 1 1
=N(y; XB,8) = ——» =75 exp(—=(y — XB)'X My - X
fWlB,q,9) (y; XB,%) COREASRE exp(—5(y — XB)Z™ (y — XA)),

where ¥ = %R and 7! = qR™L.

We do a statistical analysis of the model parameters, given the data. We introduce independent
prior densities for the model parameters as follows: : f(3) = N(8;0,S5), 8 € R?, with known
S, f(q) o< ¢* Lexp(—bq), ¢ > 0, with known a og b, and f(¢) =1,0 < ¢ < 1.

a) Find the full conditional distribution of /.
Find the full conditional distribution of q.
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b) Assume ¢ is fixed. Describe in detail how you can use a) above to construct a Gibbs
sampling algorithm to simulate from the f(5, q|y, ¢) distribution.

c) The algorithm is extended by a Metropolis-Hastings step for ¢, given all other variables.
Set ¢(b) as current state of ¢ in the Markov chain, and introduce proposal distribution
g(B|e(b)) oc ¢ H1 — @)@t for ¢, 0 < ¢ < 1. Here c = r¢(b) > 0, d = r(1 — ¢(b)) > 0,
so the mean E(¢|p(b)) = ¢/(c+ d) = ¢(b). Further, r is a fixed parameter, set by us.

Find the acceptance probability of the Metropolis-Hastings step.
Describe briefly what happens with the proposal, acceptance probability and the resulting

Markov chain when 7 is very small or large.
Problem 3 Classification and bootstrap

A Gaussian mixture distribution for vector z has density

K K
flo) = mN(w;w, %), Y m=1,
=1 1=1

where N(z;u;,Y;) is the density of a Gaussian with mean g, and covariance matrix ;. We
assume >; = X for all classes [ =1,..., K.

Two responses are measured in a lab experiment of rock samples, i.e. the response vector is
r = (x1,22)". We want to classify the response in one of K = 2 classes: resource and waste
rock.

a) Describe the use of Linear Discriminant Analysis (LDA) to classify the response in two

classes.
Classify data z = (0.6,0.2)" when u; = (0,0)%, po = (1,0)%, 7, = 0.5 and
1 0.9
2= [0 1°]

What if the 0.9 elements in the covariance matrix change to 07

b) In practice the weight 7, mean values and covariance matrices are estimated from data.
Assume we have N bivariate lab measurements z',...,z". Take for granted that we
have a routine for computing the maximum likelihood estimator (MLE). The N data
values give MLEs as in a).

Describe how to use parametric bootstrap to assess the uncertainty in the MLEs here.



