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Problem 1 Across the lattice

a) Assume you have a routine for generating uniform numbers U(0, 1). Write and describe
an algorithm for sampling a uniform integer between 1 and n, i.e. X ∼ U{1, . . . , n}.

Consider a regular lattice of size m×m. A robot should walk from vertex (1, 1) to (m,m). It
is only allowed to walk horizontal, vertical or diagonal edges. When the robot reaches a vertex,
it takes a random direction, including the edge where it entered. For an internal vertex this
means 8 equally likely directions. At the outermost vertices and corners there are less options
(5 or 3), but these (5 or 3 directions) are still equally likely. Horizontal and vertical edges have
distance 1, while diagonal edges have distance

√
2. Figure 1 illustrates this for m = 4.

b) Let T be the distance walked by the robot before reaching vertex (m,m). What is the
probability of the event T = (m− 1)

√
2 ?

The distribution of T may be explored by Monte Carlo sampling. Write the pseudo-code
for drawing realizations of T .

Figure 2 shows 10000 independent Monte Carlo samples of T in the situation with m = 4. The
sample distances are here sorted from smallest to largest.
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Figure 1: Illustration of vertices and edges. The robot walks from (1, 1) to (m,m).
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Sorted samples out of 10000 runs

Figure 2: Results of 10000 independent Monte Carlo realization of the walk distance T for
m = 4. Plot of sorted distances.

c) Use the plot to estimate the probability of p = P (T > 100). What is the variance of
the Monte Carlo estimate of p? Approximately how many Monte Carlo samples would
ensure that a 90 percent confidence interval for p has length 0.001?

What are the challenges when approximating P (T > 300) here? Discuss and suggest
specific Monte Carlo schemes for improved approximation of this probability.

Problem 2 Change point determination

Data y1, . . . , yn for n = 100 are plotted in Figure 3.

a) Assume first that data are modeled as follows: yi = µ + σεi, i = 1, . . . , 100, where
εi ∼ N(0, 1) are Gaussian independent errors. The precision is defined by q = 1/σ2.
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Figure 3: Plot of the 100 data values yi, i = 1, . . . , 100.

Let further µ ∼ N(η, (1/r)) and q ∼ Gamma(α, β) be independent variables a priori,
where η = 0, r = 1, α = 1 and β = 1 are fixed. The Gamma density is defined by
p(q) ∝ qα−1e−βq.

Show that the full conditional distribution of µ is Gaussian with variance 1/(r+ qn) and
mean (rη + q

∑n
i=1 yi)/(r + qn).

Show that the full conditional distribution of q is Gamma(α+n/2, β+(1/2)
∑n

i=1(yi−µ)2).

One suspects that the data gathering scheme was modified after t < n of the data were
acquired. An alternative model for the data is then as follows: yi = µ1 + σ1εi, i = 1, . . . , t,
and yi = µ2 + σ2εi, i = t + 1, . . . , n. Here εi ∼ N(0, 1) are Gaussian independent errors,
and the precisions are defined by q1 = 1/σ2

1 and q2 = 1/σ2
2. Let further µ1 ∼ N(η, (1/r)),

µ2 ∼ N(η, (1/r)), q1 ∼ Gamma(α, β) and q2 ∼ Gamma(α, β) be independent variables a
priori, with η, r, α and β set as in point a).

b) Assume that 1 < t < n is known. Use the results from the previous point to:

Compute the full conditionals of µ1 and µ2.

Compute the full conditionals of q1 and q2.

We next assume that t is unknown. Let t have a uniform distribution among the integers 1 to
n a priori.

c) The change point t can be updated using a Metropolis-Hastings step, keeping µ1, µ2,
q1 and q2 fixed. Assume we use a proposal distribution which is uniform within {t(b)−
h, . . . , t(b) + h}, where t(b) is the current value of t. Derive the associated acceptance
rate of a proposed variable.
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We implement a Markov chain Monte Carlo sampler to draw realizations from the posterior
distribution of t, µ1, µ2, q1 and q2 given the data y1, . . . , y100. One iteration of the Markov
chain Monte Carlo consists of Gibbs-sampling from the full conditionals from point b) for µ1,
q1, µ2 and q2, and a Metropolis-Hastings step for t, as described in point c). Figure 4 shows
traceplots of 10000 updates.
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Figure 4: Plot of variables as a function of the Markov chain Monte Carlo iterations.

d) What is the burn-in time for this Markov chain Monte Carlo algorithm?

The implementation uses h = 1 in the uniform proposal distribution for t. What effects
would a larger h give?

e) Construct a useful joint proposal distribution for t, µ1, µ2, q1 og q2. Compute the
associated accept probability?

Problem 3 Bootstrap

Data y1, . . . , y11 are available from an experiment. The empirical mean is ȳ = (1/11)
∑11

i=1 yi =
9.46.
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a) Explain the boostrap idea to approximate the sampling distribution of ȳ.

Write pseudo-code for drawing B bootstrap replicates to approximate this sampling
distribution.

Using B = 100 we get the following sorted bootstrap replicates of the empirical mean
3.11, 3.37, 3.82, 4.37, 4.41, 4.62, 4.64, . . . , 14.60, 14.89, 15.88, 16.08, 16.28, 17.89, 17.90.

b) Use these bootstrap results directly to compute an approximate 90 percent confidence
interval for the mean.

Classical confidence intervals for the mean are (ȳ±t10,0.95s/
√
n) or (ȳ±z0.95s/

√
n), where

tv,α and zα are the α percentiles of the t-distribution with v degrees of freedom and the
standard normal, respectively. Further, the empirical variance is s2 = (1/10)

∑11
i=1(yi −

ȳ)2.

What are the assumptions underlying these classical results compared to those of boot-
strapping?


