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Problem 1 Across the lattice

a) Assume you have a routine for generating uniform numbers U(0, 1). Write and describe
an algorithm for sampling a uniform integer between 1 and n, i.e. X ~ U{1,...,n}.

Consider a regular lattice of size m x m. A robot should walk from vertex (1,1) to (m,m). It
is only allowed to walk horizontal, vertical or diagonal edges. When the robot reaches a vertex,
it takes a random direction, including the edge where it entered. For an internal vertex this
means 8 equally likely directions. At the outermost vertices and corners there are less options
(5 or 3), but these (5 or 3 directions) are still equally likely. Horizontal and vertical edges have
distance 1, while diagonal edges have distance v/2. Figure 1 illustrates this for m = 4.

b) Let T be the distance walked by the robot before reaching vertex (m,m). What is the
probability of the event T = (m — 1)v/2 ?

The distribution of 7" may be explored by Monte Carlo sampling. Write the pseudo-code
for drawing realizations of 7.

Figure 2 shows 10000 independent Monte Carlo samples of 7" in the situation with m = 4. The
sample distances are here sorted from smallest to largest.
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Figure 1: Illustration of vertices and edges. The robot walks from (1,1) to (m,m).
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Figure 2: Results of 10000 independent Monte Carlo realization of the walk distance 7" for
m = 4. Plot of sorted distances.

c) Use the plot to estimate the probability of p = P(T" > 100). What is the variance of
the Monte Carlo estimate of p? Approximately how many Monte Carlo samples would
ensure that a 90 percent confidence interval for p has length 0.0017

What are the challenges when approximating P(T" > 300) here? Discuss and suggest
specific Monte Carlo schemes for improved approximation of this probability.

Problem 2 Change point determination

Data yy,...,y, for n = 100 are plotted in Figure 3.

a) Assume first that data are modeled as follows: y; = pu + o€, @ = 1,...,100, where
€; ~ N(0,1) are Gaussian independent errors. The precision is defined by ¢ = 1/0%.
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Figure 3: Plot of the 100 data values y;, i = 1,...,100.

Let further p ~ N(n,(1/r)) and ¢ ~ Gamma(c, ) be independent variables a priori,
where n = 0, r = 1, « = 1 and f = 1 are fixed. The Gamma density is defined by
p(g) oc ¢*te™.

Show that the full conditional distribution of u is Gaussian with variance 1/(r 4+ ¢n) and
mean (1 +q i 4:)/(r + qn).

Show that the full conditional distribution of ¢ is Gamma(a+n/2, B+(1/2) 7 (yi—p)?).

One suspects that the data gathering scheme was modified after ¢ < n of the data were
acquired. An alternative model for the data is then as follows: y; = uy + o016, @ = 1,... ¢,
and y; = pg + o9¢;, i = t+1,...,n. Here ¢ ~ N(0,1) are Gaussian independent errors,
and the precisions are defined by ¢, = 1/0% and ¢ = 1/03. Let further py ~ N(n, (1/r)),
pe ~ N(n,(1/r)), ¢1 ~ Gamma(a, ) and ¢ ~ Gamma(a, ) be independent variables a
priori, with 7, 7, @ and ( set as in point a).

b) Assume that 1 < ¢ < n is known. Use the results from the previous point to:
Compute the full conditionals of p; and ps.
Compute the full conditionals of ¢; and gs.

We next assume that ¢t is unknown. Let ¢ have a uniform distribution among the integers 1 to
n a priori.

c) The change point ¢ can be updated using a Metropolis-Hastings step, keeping 1, pa,
¢1 and ¢y fixed. Assume we use a proposal distribution which is uniform within {¢(b) —
hy...,t(b) + h}, where £(b) is the current value of t. Derive the associated acceptance
rate of a proposed variable.
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We implement a Markov chain Monte Carlo sampler to draw realizations from the posterior
distribution of ¢, u1, e, ¢1 and go given the data yq,...,y100. One iteration of the Markov
chain Monte Carlo consists of Gibbs-sampling from the full conditionals from point b) for
¢1, t2 and g9, and a Metropolis-Hastings step for ¢, as described in point ¢). Figure 4 shows
traceplots of 10000 updates.
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Figure 4: Plot of variables as a function of the Markov chain Monte Carlo iterations.

d) What is the burn-in time for this Markov chain Monte Carlo algorithm?

The implementation uses h = 1 in the uniform proposal distribution for ¢t. What effects
would a larger h give?

e) Construct a useful joint proposal distribution for ¢, py, w2, ¢ og go. Compute the
associated accept probability?

Problem 3 Bootstrap

Data y1, .. .,y11 are available from an experiment. The empirical mean is y = (1/11) leil Yi =
9.46.
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a) Explain the boostrap idea to approximate the sampling distribution of ¥.

Write pseudo-code for drawing B bootstrap replicates to approximate this sampling
distribution.

Using B = 100 we get the following sorted bootstrap replicates of the empirical mean
3.11,3.37,3.82,4.37,4.41,4.62,4.64, ..., 14.60,14.89,15.88,16.08, 16.28,17.89, 17.90.

b) Use these bootstrap results directly to compute an approximate 90 percent confidence
interval for the mean.

Classical confidence intervals for the mean are (§=+t190.955/v/n) or (§=£20.955/+/n), where

tv.a and z, are the o percentiles of the t-distribution with v degrees of freedom and the
standard normal, respectively. Further, the empirical variance is s* = (1/10) 211;(% —

v)*.
What are the assumptions underlying these classical results compared to those of boot-

strapping?



