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Problem 1

Assume we only have a method to generate random numbers that are uniformly
distributed between 0 and 1.

a) Describe how you can generate samples from a normal distribution with
mean µ ∈ R and variance σ2 > 0. Choose an approach that does not include
a rejection step.

b) Based on the approach in part a) describe how to obtain random samples
from a mixture density created as the mixture of two normal distributions,
i.e.

w · N (µ1, σ
2
1) + (1− w) · N (µ2, σ

2
2),

with 0 < w < 1 and where w denotes the mixture weight.
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Problem 2

Assume we have data on overall mortality aggregated to certain age groups and
calendar-time intervals. Let Eij denote the expected number of cases (known) in
age group i = 1, . . . , I and time interval j = 1, . . . , J . We assume that the number
of cases yij in age group i during calendar period j are conditionally independent
and follow a Poisson distribution:

yij | ηij ∼ Poisson(Eij exp(ηij))

where
ηij = θj + zij.

Component θ = (θ1, . . . , θJ)> is temporally structured. A common way to intro-
duce a temporally structured effect is to assume that effects adjacent in time are
similar. Here, we do this using a prior based on first-order differences:

p(θ|κθ) ∝ κ
(J−1)/2
θ exp

−κθ2
J∑
j=2

(θj − θj−1)2


= κ

(J−1)/2
θ exp

(
−κθ2 θ

>Rθ
)
.

Here, R is defined as

R =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .
−1 2 −1

−1 2 −1
−1 1


and κθ is the precision (inverse variance) parameter that determines the degree of
smoothing.

Component z = (z11, . . . , zIJ)> is unstructured white noise with precision param-
eter κz, i.e. N (0, κ−1

z II×J), where II×J denotes the identity matrix of dimension
I × J .

The distribution of ηij, conditional on the component θj and κz, is now

ηij | θj, κz ∼ N (θj, κ−1
z ).
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The precision terms are assigned gamma prior distributions:

κθ ∼ Gamma(αθ, βθ),
κz ∼ Gamma(αz, βz).

The gamma distribution Gamma(a, b) has density function:

p(x) = ba

Γ(a)x
a−1 exp(−bx), with x > 0 and a, b > 0.

a) Explain shortly the principles of Gibbs-sampling.

b) Derive the full-conditional distributions for

• p(κz | y, κθ,η,θ) and p(κθ | y, κz,η,θ)
• p(ηij | y, κz, κθ,η−ij,θ) and p(θ | y, κz, κθ,η).

Motivate your derivations.

If possible define the parametric distribution and its parameters.
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Problem 3

The lines on the next page show a MCMC program to generate samples from a
specific univariate continuous target distribution X|a, b ∼ Target(a, b), with x ∈ R
and parameters a = 0 and b = 1. The target density on log-scale is defined in the
R-function dtarget(x, a, b, log=TRUE) (not explicitly given).

a) • In lines 33–35 we see that only samples after the burn-in period are
saved. Define the term “burn-in” period. Why do we not use the
samples produced during the burn-in period?
• What type of proposal distribution is used and why is the logproposal.ratio

on line 17 equal to 0?

b) Below you see the traceplot and autocorrelation plot for samples obtained
with my.mcmc(nburnin=100, numit=1000, sd=0.2).
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• Do you expect a high or low overall acceptance rate? Please explain.
• What is the role of the parameter sd? How would you change the value

of sd to explore the target distribution more efficiently? Explain your
choice.

c) Suppose we have generated 1000 samples for our random variable X:

• Assume you obtain an effective sample size of 23. What does this mean?
• Suppose you are interested in the probability q = P (X > 0). Explain

how you could estimate q using the generated samples?
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1 my.mcmc <- function (nburnin , numit , sd ){
2
3 xsamples <- rep(NA , numit)
4 yes <- 0
5 no <- 0
6 # specify a starting value
7 x <- 0.0
8
9 for(k in -(nburnin -1): numit ){

10 # propose a new value
11 proposal <- rnorm (1, mean=x, sd=sd )
12
13 # compute log posterior ratio
14 logposterior .ratio <- dtarget (proposal , a=0, b=1, log=TRUE) -
15 dtarget (x, a=0, b=1, log=TRUE)
16 # compute log proposal ratio
17 logproposal.ratio <- 0
18
19 # derive the acceptance probability (on log scale)
20 alpha <- logposterior .ratio + logproposal .ratio
21 # accept - reject step
22 if(log( runif (1)) <= alpha ){
23 # accept the proposed value
24 x <- proposal
25 # increase counter of accepted values
26 yes <- yes + 1
27 }
28 else{
29 # stay with the old value
30 no <- no + 1
31 }
32

33 if(k > 0){
34 xsamples[k] <- x

35 }
36 if(k %% 100 == 0){
37 # print every 100 iterations the acceptance rate
38 cat("The acceptance rate is:", round (yes/(yes+no)*100 ,2) , "%\n")
39 }
40 }
41 return ( xsamples )
42 }
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Problem 4

Assume we have a data set (y1, x1), . . . , (yn, xn), where xi denotes an observation
and yi the class label. We would like to estimate the misclassification rate of a
classification method using k-fold cross-validation.

a) Explain how k-fold cross-validation is implemented.

b) What are the advantages and disadvantages of k-fold cross-validation relative
to leave-one-out cross-validation when k < n. Consider in your argumenta-
tion computational aspects and accuracy of the obtained misclassification
rate.


