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Problem 1

a) The marginal density of X is

fX(x, y) ∝
∫ ∞

0

x2e−xydy = x2 1

−x
e−xy

∣∣∣∣∞
0

= x

for 0 < x < 1 which means that the normalized density is fX(x) = 2x and so FX(x) = x2.
We can thus generate X by setting X = F−1

X (U) =
√
U where U ∼ unif(0, 1).

b) The conditional density of Y given X = x is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
= xe−yx,

that is, Y |X = x ∼ exp(x). We can thus generate a realization of X, Y from its joint
density by first using the method in point a) and then set Y = − 1

X
ln(1 − V ) where

V ∼ unif(0, 1) (again using the inversion method). This also gives us a realization of Y
from its marginal density so no additional method is needed to generate Y .

c) Since Y |X = x ∼ exp(x), E(Y |X) = 1
X
. Using the law of total expectation, we thus

obtain

EY = EE(Y |X) = E
1

X
=

∫ 1

0

1

x
2xdx = 2

Thus, since Y has finite expectation, the strong law of large numbers implies that µ̂MC =
1
n

∑n
i=1 Yi converges almost surely to EY . In general, convergence almost surely implies

convergence in probability.

However, since

VarY = E Var(Y |X) + VarE(Y |X)

= E
1

X2
+Var

1

X

≥
∫ 1

0

1

x2
2x dx

= 2 ln x
∣∣1
0

= ∞

the variance of µ̂MC is also infinite and thus E((µ̂MC −EY )2) will be infinite no matter
how large we choose n. Hence, µ̂MC does not converge in mean square to EY . Estimating
the standard error of µ̂MC involves estimating VarY by the sample variance but this is
clearly not possible when the estimand is infinite.
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Problem 2

a) The expected survival time become

µT = E(T )

=

∫ ∞

0

t · 2ate−at2dt

=

∫ ∞

0

√
u

a
e−udu

=
1√
a
Γ(

3

2
)

=
1

2

√
π

a

Since ln a ∼ N(µ0, σ
2
0) it follows that

lnµT = − ln 2− 1

2
ln π − 1

2
ln a ∼ N(− ln 2− 1

2
lnπ − 1

2
µ0,

1

4
σ2
0).

Accordingly, the prior on µT is also log-normal. The lower and upper 5% quantiles of µT

are ln 1 = 0 and ln 10. Thus, the mean on log-scale

− ln 2− 1

2
ln π − 1

2
µ0 =

1

2
ln 10

which gives µ0 = ln 10 + lnπ + 2 ln 2 = 4.83. Similarly, the lower 5% quantiles

0 = 4.83− 1

2
σ0z0.05

which gives σ0 = 4.93.

b) Conditional on a each right censored survivaltime Ti follow left truncated Rayleigh dis-
tributions with densities

π(ti|a, yi, δi) =
fT (ti)

P (Ti > yi)
=

2atie
−at2i

e−ay2i
= 2atie

−a(t2i−y2i )I(ti > yi)

and since the survival times are independent conditional on a and the censoring indica-
tors, their joint full conditional is

π(t1, t2, . . . , tm|a, yi, δi) =
m∏
i=1

2atie
−a(t2i−y2i )I(ti > yi).

Using the inversion method, we can simulate from the joint density by setting ui ∼
unif(FT (yi|a), 1) and ti = F−1

T (ui) =
√

− 1
a
ln(1− ui) for each component i = 1, 2, . . . ,m.
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c) Conditional on t, the full conditional of a can be written

π(a|t) ∝ 1

a
e
− (ln a−µ0)

2

2σ2
0

n∏
i=1

2atie
−at2i

∝ e
− (ln a−µ0)

2

2σ2
0 an−1e−a

∑n
i=1 t

2
i

(1)

This suggest using a Gamma density

Q(a′|a, t) = (
∑n

i=1 t
2
i )

n

Γ(n)
an−1e−a

∑n
i=1 t

2
i (2)

as proposal. This leads to

π(a′|t)Q(a|a′, t)
π(a|t)Q(a′|a, t)

= e
− 1

2σ2
0
((ln a′−µ0)2−(ln a−µ0)2

after cancellation of terms in normalizing constants and in targets against the proposals
and log acceptance probability

lnα = lnmin(1,
π(a′|t)Q(a|a′, t)
π(a|t)Q(a′|a, t)

) = min(0,− 1

2σ2
0

((ln a′ − µ0)
2 − (ln a− µ0)

2). (3)

It is evident from (3) that the acceptance probability will be high if the prior variance
σ2
0 is high (the prior is vague) and the posterior distribution of ln a is not located too far

out in the tails of the prior.

It is tempting to rewrite the Gaussian term in (1) as

e
− (ln a−µ0)

2

2σ2
0 = e

− 1

2σ2
0
((ln a)2−2µ0 ln a+µ2

0) ∝ e
− 1

2σ2
0
(ln a)2

a
µ0
σ2
0

which suggests including the additional term µ0/σ
2
0 in the shape parameter of the Gamma

proposal. This leads to further simplifications in (3). We can expect a higher overall
acceptance probability, however, only if the posterior of ln a happen to be located in the
vicinity of 0 rather than µ0. So in a real applied setting, this modification of (2) would
perhaps in most cases not be a good idea given that µ0 is already supposed to reflect our
prior beliefs about ln a.

d) In Fig. 3 we notice a quite strong posterior dependency between a and and the summary
statistic

∑n
i=1 t

2
i . This is expected since a small value of a will tend to make

∑n
i=1 t

2
i

large and visa versa. It not unsurprising that the convergence of the Markov chain is
slow when a and t are updated in separate Gibbs step.
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Since we can both simulate from and evaluate the joint density of the entire block
t1, t2, . . . , tm, this suggest constructing a block proposal where we first generate a pro-
posal a′ for a and then simulate t1, t2, . . . , tm from its full conditional given a′ using the
method in point b). The optimal proposal for a here would be to use the posterior
marginal of a but this is clearly not feasible is is reasonable to resort to some form of
random walk proposal, e.g. a Gaussian. This leads to the block proposal

Q(a′, t′1:m|a, t1:m) ∝ e−
(a′−a)2

2v

m∏
i=1

2a′tie
−a′(t2i−y2i )I(ti > yi).

The step length v will need tuning, and we can expect a quite large step length to work
well since the joint proposal will align well with the overall shape of the joint target
posterior.

Problem 3

a) The cdf of θ̂ = X(1) becomes

FX(1)
(x) = P (X(1) ≤ x)

= 1− P (X(1) > x)

= 1− P (X1 > x ∩ · · · ∩Xn > x)

= 1−
n∏

i=1

P (Xi > x)

= 1− (e−λ(x−θ))n

= 1− e−nλ(x−θ)

Conditional on λ̂, θ̂, the bootstrap replicates θ̂b would be distributed the same way but
with λ̂, θ̂ as the parameter values, that is,

Fθ̂b(x|λ̂, θ̂) = 1− e−nλ̂(x−θ̂)

Quantiles of the bootstrap replicates are given by the inverse of this cdf and so the
percentile confidence interval would be given by

(θ̂ − 1

nλ̂
ln(1− α/2), θ̂ − 1

nλ̂
ln(α/2))

if we neglect Monte-Carlo error.

The percentile method is valid if a transformation exist such that ϕ(θ̂) − ϕ(θ) has cdf
satisfying H(z) = 1−H(−z).
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Given that θ̂ = X(1) > θ with probability 1 and that the lower limit of the percentile

interval is larger than θ̂, the percentile interval will contain θ with probability zero so
the method fails very badly.

That the true coverage is different from the nominal (1 − α)-level implies that no such
transformation H exists in the present case.

b) Since θ is a location parameter and 1/λ is a scale parameter, this suggest using

T =
θ̂ − θ

1/λ̂

as a pivotal quantity. Alternatively, since Var(θ̂) = 1
n2λ2 , we could use the estimator

1/(nλ̂) of standard error of θ̂ in the denominator, which would clearly lead to an identical
interval.

The lower and upper Tα/2 and T1−α/2 quantiles of T can be estimated from bootstrap
replicates

T b =
θ̂b − θ̂

1/λ̂b

of T from the fitted model F (x; λ̂, θ̂). Since T and T b have identical distributions, we
then know that

P (Tα/2 <
θ̂ − θ

1/λ̂
< T1−α/2) = 1− α

and so

(θ̂ − 1

λ̂
T1−α/2, θ̂ −

1

λ̂
Tα/2)

is a (1− α) confidence interval for θ.

Expressing the observations Xi = θ + Zi/λ where Zi are iid standard exponential (with
the same releation applying to the order statistics) it follows that

T = (θ̂ − θ)λ̂ =
n(X(1) − θ)∑n
i=1Xi −X(1)

=
n(θ + Z(1)/λ− θ)∑n

i=1 θ + Zi/λ− θ + Z(1)/λ

=
nZ(1)∑n

i=1 Zi − Z(1)

.

Thus, since the distribution of Z1, Z2, . . . , Zn does not depend on θ and λ, T is pivotal.
Thus the interval is exact, at least if we neglect Monte-Carlo error or estimate the
quantiles using the same method as in project 3.
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As an aside, it can be noted that 2nZ(1) ∼ χ2
2n. Also, 2

∑n
i=1(Zi − Z(1)) ∼ χ2

2n−2 and
independent of Z(1) since the n−1 nonzero terms in the sum, by the memoryless property
of the exponential distribution, are all independent of Z(1) and standard exponentially
distributed. Thus, T has a Fisher distribution with 2 and 2n− 2 degrees of freedom so
in this case, estimating the quantiles via bootstrapping is not really needed.

c) Since θ̂ = X(1) also has a shifted exponential distribution but with rate parameter nλ,

it’s clear that E(θ̂) = θ + 1
nλ
.

Similarly, replacing the parameters with their original estimates and the estimates with
their bootstrap replicates,

E(θ̂b|λ̂, θ̂) = θ̂ +
1

nλ̂
.

We can express the bias-corrected estimator as

θ̂c = 2θ̂ − 1

B

B∑
b=1

θ̂b.

Thus,

E(θ̂c|λ̂, θ̂) = E(2θ̂ − 1

B

B∑
b=1

θ̂b|λ̂, θ̂)

= 2θ̂ − E(θ̂b|λ̂, θ̂)
= 2θ̂ − E(θ̂b|λ̂, θ̂)

= 2θ̂ − θ̂ − 1

nλ̂

= θ̂ − 1

nλ̂

Using the law of total expectation,

Eθ̂c = E(E(θ̂c|λ̂, θ̂))

= E(θ̂ − 1

nλ̂
)

= θ +
1

nλ
− 1

n
E
1

λ̂

= θ +
1

nλ
− 1

n2
E

n∑
i=1

(Xi −X(1))

= θ +
1

nλ
− 1

n2

n− 1

λ

= θ +
1

n2λ
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In the second last step we have used the memoryless property of the exponential distri-
bution which implies that the n− 1 nonzero terms Xi −X(1) in the sum (“times passed
since the first failure”) are all exponentially distributed with parameter λ.

Thus θ̂c is not unbiased but the bias is reduced by a factor of n compared to that of θ̂.


