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Problem 1

a)

b)

The marginal density of X is

o0

> 1
fx(z,y) / e Wdy = *—e | =z
0 - 0

for 0 < x < 1 which means that the normalized density is fx(z) = 2z and so Fx(z) = x°.

We can thus generate X by setting X = F;'(U) = v/U where U ~ unif(0, 1).

The conditional density of Y given X = x is

Srix(yle) = —fxf;((i’)w =ze ",

that is, Y|X = = ~ exp(z). We can thus generate a realization of X,Y from its joint
density by first using the method in point a) and then set ¥ = —%ln(l — V) where
V ~ unif(0,1) (again using the inversion method). This also gives us a realization of YV
from its marginal density so no additional method is needed to generate Y.

Since Y|X = z ~ exp(z), E(Y|X) = <. Using the law of total expectation, we thus

X
obtain
1 "1
EY =FE(Y|X)=E—= = —2xdr =2
X 0 T
Thus, since Y has finite expectation, the strong law of large numbers implies that fiy;,c =

% >, Y; converges almost surely to EY. In general, convergence almost surely implies
convergence in probability.

However, since

VarY = EVar(Y|X) + Var E(Y|X)

1 1
= E— + Var —

X X
|
2/ — 2xvdr
0 T
:21nz|(1)

= 0

the variance of fiysc is also infinite and thus F((jfip;c — EY)?) will be infinite no matter
how large we choose n. Hence, fiy;c does not converge in mean square to £'Y . Estimating
the standard error of [iy;¢ involves estimating VarY by the sample variance but this is
clearly not possible when the estimand is infinite.
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Problem 2

a)

b)

The expected survival time become

pr = E(T)

— / t - 2ate " dt
0

:/ \/Ee_“du
0 a
1.3

=—=I'(5)

Ja 2

1w
2V a
Since Ina ~ N(u,02) it follows that
1 1 1 1 1
Inpr=—-In2— Elnﬂ'— §lna~N(—ln2— §ln7r— Euo,zag).

Accordingly, the prior on pr is also log-normal. The lower and upper 5% quantiles of ur

are In1 = 0 and In 10. Thus, the mean on log-scale
1 1 1
—In2— §1n7r— SHo = §1n10

which gives g =In10 + In7 4+ 21n 2 = 4.83. Similarly, the lower 5% quantiles
1
0=4.83— 50’02’0_05
which gives oy = 4.93.

Conditional on a each right censored survivaltime 7; follow left truncated Rayleigh dis-
tributions with densities
fT(tz) . 2atie_“t?

7T(ti|a, Y, 52) = P(T > ) = » = 2atie_a(t12_yi2)l(t,- > yz)
i > Yi e~ Wi

and since the survival times are independent conditional on a and the censoring indica-
tors, their joint full conditional is

7T(t1, t2, Ce ,tm|a, Yi, 51) = H 2at¢€7a(t%7yi2)[<ti > yz)
=1

Using the inversion method, we can simulate from the joint density by setting u; ~

unif (FPr(y;|a),1) and t; = Fr ' (u;) = /—2In(1 — u;) for each component i = 1,2,...,m.
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c)

d)

Conditional on t, the full conditional of a can be written

1 =2pol >
t) oc = 20 | |2 tie ok
m(alt) o e o ] ) 2atie

xe 20 gVleeXint
This suggest using a Gamma density
ity = ot o o)
as proposal. This leads to
m(a'[t)Q(ald’,t) ~ 577 (na'—poP~(Ina—p)?

(alt)Q(d|a, t)

after cancellation of terms in normalizing constants and in targets against the proposals
and log acceptance probability

m(a'[t)Q(ald, t)
(alt)Q(d|a, t)

) = min(0, —%,g((ln a' —po)® — (Ina—po)?*).  (3)

In v = In min(1,
It is evident from (3) that the acceptance probability will be high if the prior variance
g is high (the prior is vague) and the posterior distribution of In a is not located too far
out in the tails of the prior.

It is tempting to rewrite the Gaussian term in (1) as

Ina— )2
Snepl L (na)®-2polnatpd)  —ly(na)® 9

e 0 =e xe *0 a’o

which suggests including the additional term /0?2 in the shape parameter of the Gamma
proposal. This leads to further simplifications in (3). We can expect a higher overall
acceptance probability, however, only if the posterior of In a happen to be located in the
vicinity of 0 rather than pgy. So in a real applied setting, this modification of (2) would
perhaps in most cases not be a good idea given that pg is already supposed to reflect our
prior beliefs about In a.

In Fig. 3 we notice a quite strong posterior dependency between a and and the summary
statistic ", ¢7. This is expected since a small value of a will tend to make > | ¢7
large and visa versa. It not unsurprising that the convergence of the Markov chain is

slow when a and t are updated in separate Gibbs step.
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Since we can both simulate from and evaluate the joint density of the entire block
t1,ta, ..., t,, this suggest constructing a block proposal where we first generate a pro-
posal @’ for a and then simulate t1,t,,...,t,, from its full conditional given a' using the
method in point b). The optimal proposal for a here would be to use the posterior
marginal of a but this is clearly not feasible is is reasonable to resort to some form of
random walk proposal, e.g. a Gaussian. This leads to the block proposal

(o' —a)?

Q(d',t.,, |a, t1m) oce” = H 2a't;e DI (t; > ).
i=1

The step length v will need tuning, and we can expect a quite large step length to work
well since the joint proposal will align well with the overall shape of the joint target
posterior.

Problem 3

a) The cdf of § = X(1) becomes

FX(I) (ZL‘) = P(X(l) S JZ)
:1—P(X(1)>$)
=1-PX;>zN---NX, >x)

n

=1-[[P(Xi> )

=1
—1— (6—)\(96—0))71
-1 — efn)\(:rfg)

Conditional on 5\, é, the bootstrap replicates 6® would be distributed the same way but
with A, 0 as the parameter values, that is,

Fy, (z|\,0) =1 — enMa=0)
Quantiles of the bootstrap replicates are given by the inverse of this cdf and so the
percentile confidence interval would be given by
.1 A1
(0 — —In(1—«/2),0 — 5 In(a/2))

n n

if we neglect Monte-Carlo error.

The percentile method is valid if a transformation exist such that ¢(f) — ¢(6) has cdf
satisfying H(z) =1 — H(—z).
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b)

Given that § = X(1) > 0 with probability 1 and that the lower limit of the percentile
interval is larger than 6, the percentile interval will contain # with probability zero so
the method fails very badly.

That the true coverage is different from the nominal (1 — «)-level implies that no such
transformation H exists in the present case.

Since 6 is a location parameter and 1/\ is a scale parameter, this suggest using

r-4=°
1/A

~

as a pivotal quantity. Alternatively, since Var(f) = #, we could use the estimator
1/(nA) of standard error of § in the denominator, which would clearly lead to an identical
interval.

The lower and upper T,,/» and T)_,/» quantiles of T' can be estimated from bootstrap
replicates

o0
1/
of T from the fitted model F(z; A, é) Since T and T® have identical distributions, we

then know that .
0—0
P(Ta/g < 1/5\ < Tl_a/g) =1—«

and so ] ]
(‘9 - iTlfa/Qa 0 — XTQ/Q)

is a (1 — a) confidence interval for 6.
Expressing the observations X; = 6 + Z;/\ where Z; are iid standard exponential (with
the same releation applying to the order statistics) it follows that
(X —0)
2im Xi — Xy
n(0 + Zwy /X —0)
TS0+ Zi /A — 0+ Zay/A
____nZy
CYLiZi—Zy
Thus, since the distribution of Z;, Zs, ..., Z, does not depend on # and A, T is pivotal.

Thus the interval is exact, at least if we neglect Monte-Carlo error or estimate the
quantiles using the same method as in project 3.

T=(0—-0)\=
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As an aside, it can be noted that 2nZy) ~ x3,. Also, 231" (Z; — Z1)) ~ X3,_, and
independent of Z(,) since the n—1 nonzero terms in the sum, by the memoryless property
of the exponential distribution, are all independent of Z(;) and standard exponentially
distributed. Thus, T" has a Fisher distribution with 2 and 2n — 2 degrees of freedom so
in this case, estimating the quantiles via bootstrapping is not really needed.

c) Since 0 = X(1) also has a shifted exponential distribution but with rate parameter nA,
L) N 1
it’s clear that £(0) =0 + —.
Similarly, replacing the parameters with their original estimates and the estimates with

their bootstrap replicates,

B(3,6) = 6+ .

We can express the bias-corrected estimator as

Thus,

=20 -0 — —
n
A1
=60—- —
nA
Using the law of total expectation,
Ef. = E(E(0.|),0))
~ 1
=F0— —
( m)
1 11
-0+ — — —E=
nx  n )\
oy Ei(X X))
N nA n? — ' )
B 1 1n-1
n nA  n? A
1
=0+ —
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In the second last step we have used the memoryless property of the exponential distri-
bution which implies that the n — 1 nonzero terms X; — X(y) in the sum (“times passed
since the first failure”) are all exponentially distributed with parameter .

Thus 6, is not unbiased but the bias is reduced by a factor of n compared to that of 0.



