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Exercise set 1

Throughout, U denotes an open, bounded subset of Rn , with C 1 boundary ∂U .

1 Consider the Neumann problem

(∗)


∆u = f in U ,

∂u

∂ν
= 0 on ∂U ,

where f ∈C (U ) is given.

a) What can we surely add to any solution to get another solution? Conclude that we don’t have
uniqueness for (∗).

b) Show that ∫
U

f (x)d x = 0

is a necessary condition for (∗) to have a solution u ∈C 2(U )∩C 1
(
U

)
.

c) Can you give a physical interpretation of part (b), for stationary heat flow with source f ?

2 Consider the Laplace equation with a Neumann boundary condition:

(∗)


∆u = 0 in U ,

∂u

∂ν
= g on ∂U ,

where g ∈C (∂U ) is given.

a) Prove that ∫
∂U

g (x)dS(x) = 0

is a necessary condition for (∗) to have a solution u ∈C 2(U )∩C 1
(
U

)
.

b) Prove Dirichlet’s principle for (∗). It asserts that u ∈C 2(U )∩C 1
(
U

)
solves (∗) if and only if it

is a minimum for the energy

I [w] = 1

2

∫
U
|∇w |2 d x −

∫
∂U

g w dS,

where w ∈C 2(U )∩C 1
(
U

)
(note that there is no assumption on the boundary values of w !).

3 a) Show that the general solution of the PDE ux y = 0 is

u(x, y) = F (x)+G(y)

for arbitrary functions F,G .
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b) Using the change of variables ξ= x + t , η= x − t , show that ut t = uxx if and only if uξη = 0.

c) Use (a) and (b) to rederive d’Alembert’s formula.

4 Show that for a radial function u(x, t ) = u(r, t ), where r = |x| and x ∈ Rn , the wave equation takes
the form

ut t = ur r + n −1

r
ur .

5 The purpose of this exercise is to show that, among all possible dimensions, only in three space
dimensions can one have distortionless radial wave propagation with attenuation. This means
the following: A radial wave in n dimensions satisfies (see the previous problem)

(∗) ut t = ur r + n −1

r
ur .

Consider such a wave that has the special form

(**) u(r, t ) =α(r ) f
(
t −β(r )

)
,

where f is a given function, called the wave profile, α(r ) is called the attenuation and β(r ) the
delay. The question is whether such solutions exist for “arbitrary” wave profiles f .

a) Plug (∗∗) into (∗) to get an ODE for f .

b) Since f is supposed to be arbitrary, conclude that the coefficients of f , f ′ and f ′′ must all
equal zero. Solve the resulting ODEs to see that n = 1 or n = 3 (unless u vanishes identically).

c) If n = 1, show that α(r ) = const. (so there is no attenuation).

6 Solve {
ut = uxx x ∈R, t > 0,

u(x,0) = x2 x ∈R,

by first showing that uxxx must vanish.

7 Use the energy method to prove uniqueness of the initial/boundary value problem
ut −∆u = f in UT ,

∂u

∂ν
= g on ∂U × [0,T ],

u = h on U × {t = 0},

where we use the Neumann boundary condition.

8 Solve the heat equation with constant dissipation:{
ut −∆u + cu = 0 in Rn × (0,∞),

u = g on Rn × {t = 0},

where c > 0 is a constant. (Hint: Change variables to v(x, t ) = ect u(x, t ).)
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9 Solve the heat equation with variable dissipation:{
ut −∆u + ct 2u = 0 in Rn × (0,∞),

u = g on Rn × {t = 0},

where c > 0 is a constant. (Hint: To find a suitable change of variables, look at the solutions of the
ODE f ′(t )+ ct 2 f (t ) = 0.)

10 Solve the heat equation with convection:{
ut −∆u +b ·Dx u = 0 in Rn × (0,∞),

u = g on Rn × {t = 0},

where b ∈Rn is a constant. (Hint: Motivated by the solution of the transport equation vt +b ·Dx v =
0, change variables to y = x − tb.)

11 Find the radial solutions u(r ) = u(x), where r = |x|, of

∆u = ku on R3,

where k > 0 is a constant. (Hint: Look at v = r u.)

12 The purpose of this problem is to find a fundamental solutionΦ(x) for −∆=− d 2

d x2 onR. To deduce
the form ofΦ, one can argue as follows:

−Φ′′ = δ (δ = Dirac’s delta function)

=⇒ −Φ′ = H +C (H = Heaviside function)

=⇒ −Φ(x) = x++C x +D

where

x+ =
{

x if x ≥ 0,

0 if x < 0,

and C ,D are arbitrary constants.

a) Prove that if f ∈Cc (R), then the function

u(x) =Φ∗ f (x) =
∫ ∞

−∞
f (y)Φ(x − y)d y (x ∈R)

satisfies −u′′ = f . Thus,Φ is a fundamental solution for − d 2

d x2 .

b) Show that in order to makeΦ(−x) =Φ(x), we must take C =−1/2, in which case

Φ(x) =−|x|
2

+D.

Which value of D makesΦ homogeneous?

13 Find the Green’s function for the interval (0, l ), recalling thatΦ(x) =−|x|/2 is a fundamental solu-

tion for − d 2

d x2 .

February 24, 2006 Page 3 of 5



Exercise set 1

14 Use the Green’s function found in the previous problem to find a formula

u(x) =
∫ l

0
G(x, y) f (y)d y

for the solution of {
−u′′ = f in (0, l ),

u(0) = u(l ) = 0.

Prove by calculating u′′ that the boundary value problem really is satisfied, if f ∈C ([0, l ]).

15 Find Green’s function for a half-ball |x| < 1, xn > 0. (Hint: Use the Green’s function for the whole
ball and reflect across xn = 0.)

16 Find Green’s function for the octant

U+ = {
x ∈R3 : |x| < 1 and x1, x2, x3 > 0

}
of the unit ball U = B(0,1) in R3.

17 One way to arrive at the form of the energy for a solution the wave equation ut t −∆u = 0 in
U × (0,∞) is to multiply the equation by ut and integrate over U , and then to integrate by parts,
assuming that u = 0 on ∂U × [0,∞). This gives

0 =
∫

U
ut (ut t −∆u)d x =

∫
U

1

2

∂

∂t
(ut )2 +∇ut ·∇u d x = d

d t

(
1

2

∫
U

(ut )2 +|∇u|2 d x

)
,

and the quantity inside the parentheses is the energy.

a) Use this idea to find the energy for a solution of the Klein-Gordon equation (appearing in
quantum mechanics)

ut t −∆u +u = 0.

b) Prove finite speed of propagation for the Klein-Gordon equation. (Hint: Modify the proof of
Theorem 6 in §2.4.)

18 Solve the wave equation in 3d (i.e., n = 3) with initial data u(x,0) = 0, ut (x,0) = x2, by using Kir-
choff’s formula.

19 Solve the wave equation in 3d with initial data u(x,0) = 0, ut (x,0) = |x|2.

20 In which region does a 3d wave (i.e., a solution of the wave equation in 3d) certainly vanish, given
that its initial data vanish outside a ball B(0,r )?

21 a) Find the area of that part of the sphere ∂B(x,R) in R3 which lies inside the ball B(0,ρ), where
x ∈R3 and R,ρ > 0. I.e., find the area of

∂B(x,R)∩B(0,ρ) ⊂R3

as a function of |x|, R and ρ. (Hint: Use the law of cosines. Consider separately the cases
|x| ≤ ρ and |x| > ρ.)
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b) Solve in 3d: {
ut t −∆u = 0 for t > 0,

u = 0, ut = h at t = 0,

where h(x) = 1 if |x| ≤ 1 and h(x) = 0 if |x| > 1. Use Kirchoff’s formula. (The solution will be
continuous, but will have discontinuous derivatives, so it will be a “weak solution”, but this
small matter need not concern us here.)

c) Sketch the graph of u versus |x|, for t = 1/2, 1 and 2. This is a “movie” of the solution.

d) Sketch the graph of u versus t , for |x| = 1/2 and 2. This is what a stationary observer at these
points in space would see, as time passes.

e) Let |x0| < 1. Ride the wave along a “light ray” emanating from x0, i.e., follow the curve
parametrized by x = x0 + t v , as t increases, where v ∈ R3 (the velocity) is a unit vector (|v |
= 1). Prove that

tu(x0 + t v, t ) converges as t →∞.
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