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Unless stated otherwise, U always denotes an open, bounded subset of R”, with C*° boundary 0U, and
L is a symmetric, uniformly elliptic 2" order differential operator in divergence form, with smooth co-

efficients:
n

Lu=- Z (aij(x)uxi)x.,
ij=1 /

where

(i) (smoothness) a;j € C*(U),
(ii) (symmetry) a;j = aj; and
(iii) (uniform ellipticity) for some 6 > 0:

n
Y. aij(0¢E =0l forallxe Uand¢eR".
ij=1

Suppose u € H&(U), fe I%(U), and that

D fVu-Vvdx:ffvdx
U U

for all v € C°(U). Prove that (1) then holds for all v € Hy (U).

Suppose F: R — Ris C! with bounded derivative:
|F'| < M.

Let 1 = p < oo (p < oo is not really necessary, but we assume it for simplicity). Suppose u €
WP (U), and set v = F(u). Prove that

ve WHP(U) with vy, =F (Wuy, for 1<i<n.

Suppose c(x) = 0 is a smooth function on U. Show existence of a weak solution u € H& (U) of the
Dirichlet problem

Lu+cu= inU,
(2) { !

u=0 on dU,

for arbitrary f € L?(U). (First define what you mean by a weak solution of this problem!)
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Problem set 2

The purpose of this exercise is to prove a version of Poincaré’s inequality for an unbounded set
U cR", contained between two parallel hyperplanes. By rotation, we may assume without loss of
generality that the hyperplanes in question are given by x; = a and x; = b, where a < b. Thus, we
assume

Uc{xeR":a<x <b}.

Prove there exists C = C(U) such that
lull 2 < CliDull 2y, forall ue Hy(U).

(Hint: If u € CP(U), write [ u?dx = [1-u? dx and integrate by parts using 1 = % (x1).)

Define
|Dul® dx
Al = /11(U) = fU—z
ueCRU),u0 [ u?dx
Prove:
a) /11 > 0.

b) Forall f € L?(U) and for all constants u > —1;, there exists a weak solution u € H; (U) of

@) —Au+pu=f inU,
u=0 ondU.

Consider the Neumann problem for the Poisson equation:

-Au=f inU,
(4) ou

— =0 on U,

ov

where f € L2(U) is given. A function u € H L) is said to be a weak solution of (4) if (think about
why this definition makes sense!)

B[u,v]szvdx forall ve H' (U),

where
Blu, v] =f Vu-Vvdx.
U

a) Show that if a weak solution exists, then necessarily,
(5) f fdx=0.
U

Our next aim is to prove that the condition (5) is also sufficient for the existence of a weak solution.
We introduce the notation
u= / udx
U

for the (non-normalized) mean of a function u € L (U). (Observe that L2(U) < L} (U) since U is
bounded!)

You will probably need to make use of the following version of the Poincaré inequality (see §5.8.1
in Evans):

6) u- 20 < ClDull2q,  forallue H'(U),

where C = C(U).
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Problem set 2

b) Define the vector subspace
H={ue H'(U):u=0}.

Prove that B[u, v] is an inner product on H.
¢) Prove that H equipped with the inner product B[u, v] is a Hilbert space.

d) Prove existence of a weak solution of (4), for any f € L?(U) satisfying (5).

We consider the nonlinear Dirichlet problem

—Au+c(u) = inU,
(7) { !

u=0 onoU,
where f € L?(U) is given, and ¢ : R — R is a given smooth function with bounded derivative:
|c'| = M.

a) Give a reasonable definition of a weak solution u € H& (U) of (7).

b) Suppose u: U — R. Prove that
DYle(w]()| < M|Du)|  forxe U, 0< |kl <dist(x,0U).

¢) Suppose u € H(} (U) is a weak solution of (7). Moreover, for simplicity assume u is compactly
supported in U. Show that
ue H*(U).

(Proceed as in the proof of interior regularity for Lu = f; you don’t need the cutoff function,
since we are assuming compact support).

Solve the following Cauchy problems, and state where the solution is defined:
a) Xuy+uy=ywith u(x,0) = x2.
b) xu,+ yuy + u; = uwith u(x, y,0) = h(x, y), where h is given.

© uy+ufu, =1with u(x,0) =1.

d) uy+uy,= u? with u0,y) = eV,

@ Solve Burgers’ equation (and draw a picture showing the characteristics and shock curves)

Ur+uu,=0
subject to the initial conditions:

a)

1 =0,
ux,0=41-x O<sx=<1,

0 X =

b)
2 <0,

u(x,0)=<2-x 0<sx<1,

=)
|
—
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Problem set 2

Consider the following boundary/inital value problem for the wave equation with dissipation:

Upr—Au+au; =0 inU x [0, T],
u=0 onoU x [0, T1],
u=g, ur=h on U x {t =0}.
Here a > 0 is a dissipation constant.
a) Use the energy method to prove uniqueness of smooth solutions.

b) Prove finite speed of propagation, i.e., prove the analogue of Theorem 6 in §2.4 of Evans, for
U —Au+au; =0.

Let G(x, y) denote the Green’s function on the domain U (for —A).

a) Use the weak maximum principle for harmonic functions to prove that G(x,y) =0 for x,y €
U x#y.

b) Use the strong maximum principle for harmonic functions to prove that G(x, y) >0 for x,y €
U x#y.

a) Suppose u: U — R is smooth. Prove that if u has a local maximum at a point x € U, then
n
Du(x)=0  and > Uy, (0§ <0 forall e R”.
i,j=1
b) Now suppose u € C*(U) and
Au=0 inU.

Use part (a) to prove the weak maximum principle:

u(x) stznalgxu forall xe U.

(Hint: Define u.(x) = u(x) + €|x|? for € > 0, and use part (a) to prove that u, can have no
interior maximum.)

Prove the weak maximum principle for the heat equation, i.e., part (i) of Theorem 4 in §2.3.3 in
Evans, using the same ideas as in the previous problem.

Prove the strong maximum principle (i.e., the solution cannot attain its maximum at an interior
point) for the PDE
Uxx +5uUyy+sin(uy) =2 inUc R2.

(Use part (a) of Problem 12.)

Let r = \/x% + y% + z? and assume C is a constant. Consider the Neumann problem

Au=C when r <1,
ou
—=2 when r = 1.
or

Prove that no smooth solution exists if C # 6. Also, construct a solution if C = 6. (Hint: Symmetry.)
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