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Problem set 2

Unless stated otherwise, U always denotes an open, bounded subset of Rn , with C∞ boundary ∂U , and
L is a symmetric, uniformly elliptic 2nd order differential operator in divergence form, with smooth co-
efficients:

Lu =−
n∑

i , j=1

(
ai j (x)uxi

)
x j

,

where

(i) (smoothness) ai j ∈C∞(
U

)
,

(ii) (symmetry) ai j = a j i and

(iii) (uniform ellipticity) for some θ > 0:

n∑
i , j=1

ai j (x)ξiξ j ≥ θ |ξ|2 for all x ∈U and ξ ∈Rn .

1 Suppose u ∈ H 1
0 (U ), f ∈ L2(U ), and that

(1)
∫

U
∇u ·∇v d x =

∫
U

f v d x

for all v ∈C∞
c (U ). Prove that (1) then holds for all v ∈ H 1

0 (U ).

2 Suppose F :R→R is C 1 with bounded derivative:∣∣F ′∣∣≤ M .

Let 1 ≤ p < ∞ (p < ∞ is not really necessary, but we assume it for simplicity). Suppose u ∈
W 1,p (U ), and set v = F (u). Prove that

v ∈W 1,p (U ) with vxi = F ′(u)uxi for 1 ≤ i ≤ n.

3 Suppose c(x) ≥ 0 is a smooth function on U . Show existence of a weak solution u ∈ H 1
0 (U ) of the

Dirichlet problem

(2)

{
Lu + cu = f in U ,

u = 0 on ∂U ,

for arbitrary f ∈ L2(U ). (First define what you mean by a weak solution of this problem!)
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4 The purpose of this exercise is to prove a version of Poincaré’s inequality for an unbounded set
U ⊂Rn , contained between two parallel hyperplanes. By rotation, we may assume without loss of
generality that the hyperplanes in question are given by x1 = a and x1 = b, where a < b. Thus, we
assume

U ⊂ {
x ∈Rn : a ≤ x1 ≤ b

}
.

Prove there exists C =C (U ) such that

‖u‖L2(U ) ≤C ‖Du‖L2(U ) for all u ∈ H 1
0 (U ).

(Hint: If u ∈C∞
c (U ), write

∫
u2 d x = ∫

1 ·u2 d x and integrate by parts using 1 = ∂
∂x1

(x1).)

5 Define

λ1 =λ1(U ) = inf
u∈C∞

c (U ),u 6=0

∫
U |Du|2 d x∫

U u2 d x
.

Prove:

a) λ1 > 0.

b) For all f ∈ L2(U ) and for all constants µ>−λ1, there exists a weak solution u ∈ H 1
0 (U ) of

(3)

{
−∆u +µu = f in U ,

u = 0 on ∂U .

6 Consider the Neumann problem for the Poisson equation:

(4)


−∆u = f in U ,

∂u

∂ν
= 0 on ∂U ,

where f ∈ L2(U ) is given. A function u ∈ H 1(U ) is said to be a weak solution of (4) if (think about
why this definition makes sense!)

B [u, v] =
∫

f v d x for all v ∈ H 1(U ),

where

B [u, v] =
∫

U
∇u ·∇v d x.

a) Show that if a weak solution exists, then necessarily,

(5)
∫

U
f d x = 0.

Our next aim is to prove that the condition (5) is also sufficient for the existence of a weak solution.
We introduce the notation

u =
∫

U
u d x

for the (non-normalized) mean of a function u ∈ L1(U ). (Observe that L2(U ) ⊂ L1(U ) since U is
bounded!)

You will probably need to make use of the following version of the Poincaré inequality (see §5.8.1
in Evans):

(6)
∥∥u −u

∥∥
L2(U ) ≤C ‖Du‖L2(U ) for all u ∈ H 1(U ),

where C =C (U ).
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b) Define the vector subspace
H = {

u ∈ H 1(U ) : u = 0
}

.

Prove that B [u, v] is an inner product on H .

c) Prove that H equipped with the inner product B [u, v] is a Hilbert space.

d) Prove existence of a weak solution of (4), for any f ∈ L2(U ) satisfying (5).

7 We consider the nonlinear Dirichlet problem

(7)

{
−∆u + c(u) = f in U ,

u = 0 on ∂U ,

where f ∈ L2(U ) is given, and c :R→R is a given smooth function with bounded derivative:∣∣c ′∣∣≤ M .

a) Give a reasonable definition of a weak solution u ∈ H 1
0 (U ) of (7).

b) Suppose u : U →R. Prove that∣∣∣Dh
k [c(u)](x)

∣∣∣≤ M
∣∣∣Dh

k u(x)
∣∣∣ for x ∈U , 0 < |h| < dist(x,∂U ).

c) Suppose u ∈ H 1
0 (U ) is a weak solution of (7). Moreover, for simplicity assume u is compactly

supported in U . Show that
u ∈ H 2(U ).

(Proceed as in the proof of interior regularity for Lu = f ; you don’t need the cutoff function,
since we are assuming compact support).

8 Solve the following Cauchy problems, and state where the solution is defined:

a) xux +uy = y with u(x,0) = x2.

b) xux + yuy +uz = u with u(x, y,0) = h(x, y), where h is given.

c) ux +u2uy = 1 with u(x,0) = 1.

d) ux +uy = u2 with u(0, y) = e−y2
.

9 Solve Burgers’ equation (and draw a picture showing the characteristics and shock curves)

ut +uux = 0

subject to the initial conditions:

a)

u(x,0) =


1 x ≤ 0,

1−x 0 ≤ x ≤ 1,

0 x ≥ 1.

b)

u(x,0) =


2 x ≤ 0,

2−x 0 ≤ x ≤ 1,

0 x ≥ 1.
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10 Consider the following boundary/inital value problem for the wave equation with dissipation:
ut t −∆u +αut = 0 in U × [0,T ],

u = 0 on ∂U × [0,T ],

u = g , ut = h on U × {t = 0}.

Here α> 0 is a dissipation constant.

a) Use the energy method to prove uniqueness of smooth solutions.

b) Prove finite speed of propagation, i.e., prove the analogue of Theorem 6 in §2.4 of Evans, for
ut t −∆u +αut = 0.

11 Let G(x, y) denote the Green’s function on the domain U (for −∆).

a) Use the weak maximum principle for harmonic functions to prove that G(x, y) ≥ 0 for x, y ∈
U , x 6= y .

b) Use the strong maximum principle for harmonic functions to prove that G(x, y) > 0 for x, y ∈
U , x 6= y .

12 a) Suppose u : U →R is smooth. Prove that if u has a local maximum at a point x ∈U , then

Du(x) = 0 and
n∑

i , j=1
uxi x j (x)ξiξ j ≤ 0 for all ξ ∈Rn .

b) Now suppose u ∈C∞(
U

)
and

∆u = 0 in U .

Use part (a) to prove the weak maximum principle:

u(x) ≤ M := max
∂U

u for all x ∈U .

(Hint: Define uε(x) = u(x)+ ε |x|2 for ε > 0, and use part (a) to prove that uε can have no
interior maximum.)

13 Prove the weak maximum principle for the heat equation, i.e., part (i) of Theorem 4 in §2.3.3 in
Evans, using the same ideas as in the previous problem.

14 Prove the strong maximum principle (i.e., the solution cannot attain its maximum at an interior
point) for the PDE

uxx +5uy y + sin(ux ) = 2 in U ⊂R2.

(Use part (a) of Problem 12.)

15 Let r =
√

x2 + y2 + z2 and assume C is a constant. Consider the Neumann problem
∆u =C when r < 1,

∂u

∂r
= 2 when r = 1.

Prove that no smooth solution exists if C 6= 6. Also, construct a solution if C = 6. (Hint: Symmetry.)
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