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Solutions for exam questions

1 a) Let us write
UT = (a,b)× (0,T ),

so the closure is
U T = [a,b]× [0,T ]

As usual, we denote byΓT the parabolic boundary, consisting of the bottom and vertical sides
of the boundary of [a,b]× [0,T ]. Thus,

ΓT = {
(x, t ) ∈U T : x = a or x = b or t = 0

}
.

Now suppose u ∈C 2
1 (UT )∩C (U T ) is a solution of the heat equation ut = uxx in UT . Define

M = max
U T

u.

Then the weak maximum principle says that the maximum M is attained at some point on
the parabolic boundary ΓT . In symbols,

max
ΓT

u = M .

b) It is trivial to verify that u = −2xt − x2 satisfies ut = xuxx . To check whether u violates the
weak maximum principle, we need to locate the maximum of u in the rectangle R = [−2,2]×
[0,1]. We first check interior points, so we solve

ut = ux = 0,

which has only one solution, namely x = t = 0, where u = 0. Now we check the boundary. For
t = 0 we have u ≤ 0. For x =−2 and 0 ≤ t ≤ 1, we have u = 4(t −1) ≤ 0. For x = 2 and 0 ≤ t ≤ 1,
we have u =−4(t +1) < 0. Finally, for t = 1 we have u =−2x − x2, which has maximum u = 1
at x =−1. So clearly, the maximum of u over R is u = 1, and it occurs only at the top part of
the boundary, at the point (x, t ) = (−1,1), hence the weak maximum principle is violated.

2 We have two jumps in the initial data. The first jump (at x = 0) gives a rarefaction solution, the
other jump (at x = 1) gives a shock solution, which by Rankine-Hugoniot (with F (u) = u2/2) moves
with speed 1/2 to the right. Combining the rarefaction and shock solutions, we get

(1) u(x, t ) =



0 for x ≤ 0,
x

t
for 0 ≤ x ≤ t ,

1 for t ≤ x ≤ 1+ t

2
,

0 for x ≥ 1+ t

2
.

Note, however, that this is valid only until the time t when the rarefaction and the shock meet:

t = 1+ t

2
i.e., t = 2.
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At this time we have

u(x,2) =


0 for x ≤ 0,
x

2
for 0 ≤ x ≤ 2,

0 for x ≥ 2.

So now we solve the intial value problem starting from t = 2 with these initial data. Then we get a
shock emanating from x = 2, moving to the right along a path

x = ξ(t ),

and to the left of the shock we have the continuation of the rarefaction wave,

u = ul =
x

t
,

while u = ur = 0 to the right. Thus, by Rankine-Hugoniot,

dξ

d t
= 1

2
ul =

ξ

2t
,

which we separate and solve to get ξ = p
2t , since the initial condition is ξ(2) = 2. We conclude

that for t ≥ 2,

(2) u(x, t ) =


0 for x ≤ 0,
x

t
for 0 ≤ x ≤p

2t ,

0 for x ≥p
2t ,

which together with (1) for 0 ≤ t ≤ 2 provides the complete solution.

3 Suppose u, v : U × [0,T ] are two smooth solution of the initial/boundary value problem. Then
w = u − v is a solution of the same problem, but with f , g ,h = 0. Now define

E(t ) = 1

2

∫
U

w2
t +|∇w |2 d x,
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where the integrand is understood to be evaluated at (x, t ). Then

E ′(t ) =
∫

U
wt wt t +∇w ·∇wt d x

=
∫

U
wt (wt t −∆w) d x +

∫
∂U

∂w

∂ν
wt d x

= 0

where we used integration by parts and the fact that

∂w

∂ν
= 0 on ∂U × [0,T ].

Thus, 0 ≤ E(t ) ≤ E(0) for 0 ≤ t ≤ T , but E(0) = 0, since f = g = 0. Thus Dw = 0 in U × [0,T ], hence
w = const. in U × [0,T ], but this constant must be zero, since we have zero initial data.

4 For simplicity let’s switch to (x1, x2, x3) instead of (x, y, z). By Kirchhoff’s formula,

u(x, t ) = D t

(
t

4π

∫
|y|=1

f (x + t y)dS(y)

)
,

where
f (x) = x2

1 +x2
2 .

Note that
f (x + t y) = x2

1 +x2
2 +2t (x1 y1 +x2 y2)+ t 2(y2

1 + y2
2 ).

Now we use: ∫
|y|=1

yi dS(y) = 0,∫
|y|=1

1dS(y) = 4π,∫
|y|=1

y2
i dS(y) = 1

3

∫
|y|=1

3∑
j=1

y2
j dS(y) = 1

3

∫
|y|=1

1dS(y) = 4π

3
.

It follows that
t

4π

∫
|y|=1

f (x + t y)dS(y) = t (x2
1 +x2

2)+ 2t 3

3
,

hence
u = x2

1 +x2
2 +2t 2.

5 a) A weak solution of the given Dirichlet problem is a function u ∈ H 1
0 (U ) such that

(3)
∫

U
∇u ·∇v d x︸ ︷︷ ︸
=B [u,v]

=
∫

U
f v d x for all v ∈ H 1

0 (U ).

By the Poincaré inequality, which reads (here C depends only on U )

‖u‖L2(U ) ≤C ‖Du‖L2(U ) for all u ∈ H 1
0 (U ),

we have that B [u,u] = 0 =⇒ u = 0, so B [u, v] is an inner product on H 1
0 (U ). Moreover, the

norm ‖u‖ = p
B [u,u] = ‖Du‖L2(U ) is equivalent to the standard norm on H 1

0 (U ), again by
Poincaré’s inequality. Indeed,

‖u‖ ≤ ‖u‖H 1
0 (U ) = ‖u‖L2(U ) +‖Du‖L2(U ) ≤C ‖u‖ .
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Finally, existence of a weak solution follows by the Riesz representation theorem applied to
the Hilbert space H 1

0 (U ), since v 7→ ∫
U f v d x is a bounded linear functional on H 1

0 (U ):∣∣∣∣∫
U

f v d x

∣∣∣∣≤ ∥∥ f
∥∥

L2(U ) ‖u‖L2(U ) ≤C
∥∥ f

∥∥
L2(U ) ‖u‖ ,

for all v ∈ H 1
0 (U ).

b) Suppose u ∈ H 1
0 (U ) is a weak solution and suppu ⊂⊂U . Let k ∈ {1, . . . ,n}. We take

v = D−h
k Dh

k u

in (3). Then ∫
U
∇u ·∇D−h

k Dh
k u d x︸ ︷︷ ︸

=A

=
∫

U
f D−h

k Dh
k u d x︸ ︷︷ ︸

=B

.

By "integration by parts" for difference quotients (valid by the support assumption on u),

A =−
∫

U
∇Dh

k u ·∇Dh
k u d x =−

∥∥∥∇Dh
k u

∥∥∥2

L2(U )
=−

∥∥∥Dh
k∇u

∥∥∥2

L2(U )
.

By Cauchy’s inequality with ε, we have

|B | ≤ 1

4ε

∥∥ f
∥∥2

L2(U ) +ε
∥∥∥D−h

k Dh
k u

∥∥∥2

L2(U )
≤ 1

4ε

∥∥ f
∥∥2

L2(U ) +ε
∥∥∥∇Dh

k u
∥∥∥2

L2(U )
,

where we used Theorem 3(i) in §5.8.2 of Evans (which holds with constant C = 1, actually) to
get the last inequality.

We conclude: ∥∥∥Dh
k∇u

∥∥∥2

L2(U )
=−A =−B ≤ 1

4ε

∥∥ f
∥∥2

L2(U ) +ε
∥∥∥Dh

k∇u
∥∥∥2

L2(U )
,

hence, choosing ε= 1/2, ∥∥∥Dh
k∇u

∥∥∥2

L2(U )
≤ ∥∥ f

∥∥2
L2(U ) .

Since this holds for all small enough h 6= 0, it follows by Theorem 3(ii) in §5.8.2 that the sec-
ond order weak partial derivatives exist, and∥∥ux j xk

∥∥2
L2(U ) ≤

∥∥ f
∥∥2

L2(U ) ( j ,k = 1, . . . ,n).

Therefore u ∈ H 2(U ).
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