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Our aim here is to establish domain of dependence/finite speed of propagation for the wave equation
with lower-order linear terms. The material here supersedes the discussion in Section 3.4c of McOwen.

So we consider

(1) ut t − c2∆u︸ ︷︷ ︸
principal part

+b(x, t ) ·Du +a(x, t )u︸ ︷︷ ︸
lower-order terms

= 0 (u = u(x, t ), x ∈Rn , t ∈R),

where we use the notation
Du = (c∇,ut )

and
b = (b1, · · · ,bn+1),

so that
b ·Du = (b1c)ux1 +·· ·+ (bnc)uxn +bn+1ut .

Moreover, we assume that a(x, t ) and b j (x, t ) are continuous and bounded. Thus, there exists M <∞
such that

(2) 1+|a(x, t )|+ |b(x, t )| ≤ M for all x ∈Rn , t ∈R.

Now fix a point P = (x0, t0) with t0 > 0. Let ΛP denote the domain of dependence of the point P , as for
the standard wave equation (without lower-order terms). Specifically,

ΛP = {
(x, t ) ∈Rn ×R : 0 ≤ t ≤ t0, |x −x0| ≤ c(t0 − t )

}
.

We shall show that this is also the domain of dependence for the wave equation with lower order terms.
(Therefore, it is the principal part which determines the domain of dependence, not the lower-order
terms.) The time-slices of the coneΛP are defined by

Bt =
{

x ∈Rn : (x, t ) ∈ΛP
}= {

x ∈Rn : |x −x0| ≤ c(t0 − t )
}

(0 ≤ t ≤ t0).

So Bt is just the closed ball in Rn of radius c(t0 − t ) and centered at 0.

We shall prove the following theorem (this generalizes Theorem 2 in Section 3.3 of McOwen).

Theorem 1. With notation as above, suppose u ∈C 2
(
ΛP

)
satisfies (1) in ΛP , with zero initial data in the

base:
u(x,0) = ut (x,0) = 0 for x ∈ B0.

Then u = 0 inΛP .

Before proving this, let us note the following corollary:

Corollary (Uniqueness). Uniqueness holds for solutions u ∈C 2
(
ΛP

)
of the Cauchy problem

(3)

{
ut t −c2∆u +b(x, t ) ·Du +a(x, t )u = f (x, t ), (x, t ) ∈ΛP ,

u(x,0) = g (x), ut (x,0) = h(x), x ∈ B0.

Sigmund Selberg, May 7, 2007 Page 1 of 3



Supplementary notes 1

To prove this corollary, assume that u, v ∈ C 2
(
ΛP

)
both solve (3). Then w = u − v solves (3) with f = 0

and g = h = 0, so Theorem 1 implies that w = 0, and hence u = v , inΛP .

This corollary shows that ΛP is the domain of dependence of P . Indeed, suppose now that u is a C 2

solution of (3), but on the whole space Rn ×R, not just on ΛP . Then the corollary shows that u(P ) can
only depend on the values of f (x, t ) for (x, t ) ∈ΛP and on g (x) and h(x) for x in the base B0 ofΛP .

We now prove Theorem 1.

Step 1. We define

E (t ) = 1

2

∫
Bt

u2
t +c2 |∇u|2 +u2︸ ︷︷ ︸
call this e = e(x, t )

d x (0 ≤ t ≤ t0).

Note that E (0) = 0. Our plan is to show that E (t ) = 0 for all 0 ≤ t ≤ t0. If we are able to do this, then
it follows that e(x, t ) = 0 for all (x, t ) ∈ ΛP (here we rely on the fact that e(x, t ) ≥ 0 by definition), so in
particular u(x, t ) = 0, and then we are done.

Step 2. We calculate E ′(t ). To this end we rewrite the integral defining E (t ), by passing to polar coordi-
nates x = x0 + r y , where r = |x −x0| and y is on the unit sphere in Rn . Thus, 0 ≤ r ≤ c(t0 − t ), and y ∈Rn ,∣∣y

∣∣= 1. Let dS(y) be the surface area element on the unit sphere. Thus,1

E (t ) = 1

2

∫
Bt

e(x, t )d x = 1

2

∫ c(t0−t )

0

(∫
|y|=1

e(x0 + r y, t )dS(y)

)
r n−1 dr.

The advantage now is that it is easy to take the derivative; by the usual rule for differentiating an integral
with respect to a parameter,2

E ′(t ) =− c

2
(c[t0 − t ])n−1

∫
|y|=1

e
(
x0 + c[t0 − t ]y, t

)
dS(y)+ 1

2

∫ c(t0−t )

0

(∫
|y|=1

et (x0 + r y, t )dS(y)

)
r n−1 dr.

Having differentiated, it is more convenient to switch back to the original variables. For the first integral,
we note that x = x0+c[t0−t ]y is a point on the boundary ∂Bt of Bt , and the relation between the surface
area elements is dS(x) = (c[t0 − t ])n−1 dS(y) (the areas in question are (n −1)-dimensional). Thus,

E ′(t ) =− c

2

∫
∂Bt

e (x, t ) dS(x)+ 1

2

∫
Bt

et (x, t )d x

=− c

2

∫
∂Bt

u2
t + c2 |∇u|2 +u2 dS(x)+

∫
Bt

ut ut t + c2∇u ·∇ut +uut d x

=− c

2

∫
∂Bt

u2
t + c2 |∇u|2 +u2 dS(x)+

∫
Bt

ut
(
ut t − c2∆u +u

)
d x +

∫
∂Bt

c2ut (∇u ·ν)dS(x)

=
∫
∂Bt

c

[
ut c(∇u ·ν)− 1

2

(
u2

t + c2 |∇u|2 +u2)] dS(x)+ 1

2

∫
Bt

ut
(−b ·Du + (1−a)u

)
d x

= I + J ,

where in the third step we used the general integration by parts formula,3 and in the fourth step we used
the equation (1). Note that ν is the exterior unit normal on the sphere ∂Bt .

1If you prefer, just take n = 3. Then you can use spherical coordinates y = (cosφ, sinφcosθ, sinφsinθ), where 0 ≤ φ ≤ π and
0 ≤ θ ≤ 2π. Then dS(y) = sinφdφdθ, hence

E (t ) = 1

2

∫
Bt

e(x, t )d x = 1

2

∫ c(t0−t )

0

(∫ 2π

0

∫ π

0
e
(
x0 + r (cosφ, sinφcosθ, sinφsinθ), t

)
sinφdφdθ

)
r 2 dr.

2The rule we need is d
d t

(∫ α(t )
0 F (s, t )d s

)
= F (α(t ), t ) ·α′(t )+ ∫ α(t )

0 Ft (s, t )d s. This is valid, e.g., if F (s, t ) and Ft (s, t ) are both

continuous functions, which is the case in the present application.
3This formula reads ∫

Ω
fxi g d x =−

∫
Ω

f gxi d x +
∫
∂Ω

f gνi dS,

for f , g ∈C 1(Ω)∩C
(
Ω

)
such that fxi , gxi ∈ L1(Ω). Here Ω is a bounded domain with smooth boundary, and ν is the exterior unit

normal on ∂Ω.
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Step 3. We estimate E ′(t ). From Step 2 we have E ′(t ) = I + J . First we estimate

(4) I =
∫
∂Bt

c

[
ut c(∇u ·ν)− 1

2

(
u2

t + c2 |∇u|2 +u2)] dS(x) ≤− c

2

∫
∂Bt

u2 dS(x) ≤ 0,

where we used the fact that for any real numbers q and r , we have

(5) qr ≤ 1

2
(q2 + r 2),

and we used the Cauchy-Schwarz inequality, which states that if x and y are vectors in Rn , then

(6)
∣∣x · y

∣∣≤ |x| ∣∣y
∣∣ .

Together these inequalities imply (recall also that |ν| = 1)

ut c(∇u ·ν) ≤ 1

2

(
u2

t + c2 |∇u ·ν|2)≤ 1

2

(
u2

t + c2 |∇u|2) ,

which gives (4).

Next, we estimate

(7)

J = 1

2

∫
Bt

ut
(−b ·Du + (1−a)u

)
d x

≤ 1

2

∫
Bt

ut
(|b| |Du|+ [1+|a|] |u|)d x

≤ M

2

∫
Bt

ut
(|Du|+ |u|)d x by (2)

≤ M

2

∫
Bt

[
1

2

(
u2

t +|Du|2)+ 1

2

(
u2

t +u2)] d x by (5)

≤ M
∫

Bt

[
u2

t +c2 |∇u|2 +u2] d x since |Du|2 = u2
t + c2 |∇u|2

Step 4. From (4) and (7) we conclude that

E ′(t ) ≤ ME (t ) (0 ≤ t ≤ t0).

To solve this differential inequality, as it is called, we should think about how we would solve the cor-
responding differential equation, if we had equality instead of inequality. Thus, it is natural to try to
multiply both sides by the integrating factor exp(−M t ). This gives

d

d t

(
e−M t E (t )

)≤ 0,

so the function e−M t E (t ) is nonincreasing. Therefore, e−M t E (t ) ≤ E (0), i.e.,

E (t ) ≤ eM t E (0) (0 ≤ t ≤ t0).

But in our case, E (0) = 0, so we finally conclude that

E (t ) = 0 (0 ≤ t ≤ t0),

which completes the proof of Theorem 1.
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