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1. BASIC FUNCTIONAL ANALYSIS

Let X be a vector space over R.

1.1. Normed spaces.

Definition 1. A norm on X is a map ‖·‖ : X → [0,∞), x 7→ ‖x‖, such that

(i) ‖x‖ = 0 =⇒ x = 0,

(ii) ‖cx‖ = |c|‖x‖,

(iii)
∥∥x + y

∥∥≤ ‖x‖+∥∥y
∥∥,

for c ∈ R and x, y ∈ X . The pair (X ,‖·‖) is then called a normed vector space, or just
normed space for short.

Observe that if X is a normed space with norm ‖·‖, then d(x, y) = ∥∥x − y
∥∥ is a distance

function, or metric, on X . Thus, every normed space is a metric space.

Definition 2. A Banach space is a normed space X which is complete as a metric space,
i.e., every Cauchy sequence in X has a limit in X .

Recall that a Cauchy sequence in X is a sequence {x j } ⊂ X such that for every ε> 0, there
exists N = N (ε) ∈N such that∥∥x j −xk

∥∥≤ ε for all j ,k ≥ N .

This sequence has a limit in X if there exists x ∈ X such that lim j→∞ x j = x in X , i.e.,

lim
j→∞

∥∥x j −x
∥∥= 0.

1.2. Inner product spaces.

Definition 3. An inner product on X is a map 〈 ·, · 〉 : X ×X →R such that

(i) 〈x, x,≥〉0 for all x ∈ X , and 〈x, x,=〉0 if and only if x = 0,

(ii)
〈

ax +by, z
〉= a 〈x, z 〉+b

〈
y, z

〉
,

(iii)
〈

x, y
〉= 〈

y, x
〉

,

for a,b ∈R and x, y, z ∈ X . The pair (X ,〈 ·, · 〉) is then called an inner product space.
1
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If X is an inner product space with inner product 〈 ·, · 〉, then

‖x‖ =
√
〈x, x 〉

is a norm on X , which we refer to as the norm associated to the inner product 〈 ·, · 〉. The
triangle inequality

∥∥x + y
∥∥ ≤ ‖x‖+ ∥∥y

∥∥ is satisfied on account of the Cauchy-Schwarz
inequality: ∣∣〈x, y

〉∣∣≤ ‖x‖∥∥y
∥∥ ,

which holds in every inner product space.

Definition 4. A Hilbert space is an inner product space that is a Banach space with re-
spect to the associated norm.

The usual notation for a Hilbert space is H (instead of X ).

1.3. Linear maps and linear functionals. A linear map T : X → Y between normed
spaces (X ,‖·‖X ) and (Y ,‖·‖Y ) is bounded if there exists C ≥ 0 such that

‖T x‖Y ≤C ‖x‖X for all x ∈ X .

The best constant C in this estimate is called the operator norm and denoted ‖T ‖. Thus,

‖T ‖ = sup
x∈X ,x 6=0

‖T x‖Y

‖x‖X
.

Exercise 1. Prove that the operator norm is indeed a norm on the space L(X ,Y ) of
bounded linear maps from X to Y . Moreover, prove that if Y is a Banach space, then
so is L(X ,Y ), with the operator norm.

The following theorem is often useful:

Theorem 1. Suppose X is a normed space, Y is a Banach space, and D ⊂ X is a dense
subspace. Then any bounded linear map S : D → Y has a unique extension to a bounded
linear map from X to Y .

Exercise 2. Prove this theorem.

A linear functional on X is a linear map F : X → R. The dual space of X is the space
of bounded linear functionals on X and is denoted X ∗. We equip this space with the
operator norm. Then by Exercise 1, X ∗ is a Banach space.

If H is a Hilbert space, then for any y ∈ H , the map F : H → R defined by F (x) = 〈
x, y

〉
is a bounded linear functional on H , by the Cauchy-Schwarz inequality. In fact, every
bounded linear functional on H is obtained in this way. This is the content of the fol-
lowing famous theorem, which we shall need for our applications later on.

Riesz Representation Theorem. Let H be a Hilbert space with inner product 〈 ·, · 〉. Sup-
pose F ∈ H∗. Then there exists a unique y ∈ H such that

F (x) = 〈
x, y

〉
for all x ∈ H .

We skip the proof.
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1.4. The completion of a normed space. A linear map T : X → Y is an isometry if
‖T x‖Y = ‖x‖X for all x ∈ X . Then T is of course injective, so we may view X as a sub-
space Y , i.e., we may identify X with its image T (X ) ⊂ Y . We then say that X is isomet-
rically embedded in Y .

The following theorem is of fundamental importance:

Theorem 2. Every normed space X embeds isometrically as a dense subspace of a Banach
space X . To be precise, there exist a Banach space X and a linear isometry ι : X → X such
that ι(X ) is dense in X .

The space X is called the completion of X , and is uniquely determined, up to isometry:
If we have another Banach space X̃ and a linear isometry ι̃ : X → X̃ such that ι̃(X ) is
dense in X̃ , then ι̃◦ ι−1 : ι(X ) → X̃ is a linear isometry defined on a dense subspace of X ,
so by Theorem 1 it can be extended uniquely to a linear isometry T : X → X̃ . To prove
that this map is onto, suppose y ∈ X̃ . Since T (X ) contains ι̃(X ), which is dense in X̃ ,
there exists a sequence {x j } in X such that T x j → y ; but then, since T is an isometry, x j

must be Cauchy, hence converges to some x ∈ X , and it follows that y = T x.

Exercise 3. Prove Theorem 2, by following these steps:

(a) Consider the vector space of all Cauchy sequences {x j } in X ; we shall consider
two such sequences {x j } and {y j } to be identical if lim j→∞

∥∥x j − y j
∥∥= 0; we call

the resulting vector space X . Now define∥∥{x j }
∥∥= lim

j→∞
∥∥x j

∥∥ .

Show that this is a well-defined norm on X .

(b) Define ι : X → X by

ι(x) = {x, x, . . . }.

Show that ι is a linear isometry and that ι(X ) is dense in X .

(c) Prove the following general Lemma: Suppose Y is a normed space and D ⊂ Y
is a dense subspace. If every Cauchy sequence {y j } ⊂ D has a limit in Y , then Y
is complete.

(d) Prove that X is complete.

Remark 1. Suppose Y is a Banach space containing X as a subspace, and that the norms
on X and Y , which we denote ‖·‖X and ‖·‖Y respectively, satisfy

(1) ‖x‖Y ≤C ‖x‖X for all x ∈ X .

(In other words, the inclusion map from X into Y is bounded.) Then the completion X
of X can be realized as a subspace of Y . In fact, this follows from the construction in the
above exercise; performing this construction for both the spaces X and Y , we obtain
spaces X and Y of Cauchy sequences (again identifying two sequences whose differ-
ence converges to zero), and linear isometries ιX : X → X and ιY : Y → Y . But since Y
is complete, the map ιY is in fact an isometric isomorphism. Moreover, on account of
(1), every Cauchy sequence in X is also a Cauchy sequence in Y , hence we can identify
X with a subspace of Y in an obvious way, and then ιY |X = ιX . Finally, we use the iso-
morphism ιY to map everything back into Y . Thus, we see that ι−1

Y (X ) ⊂ Y can be used
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as the completion of X , the norm being ‖x‖ = ‖ιY (x)‖X (note that this norm agrees with
‖x‖X in case x ∈ X , since ιY |X = ιX ).

Let us note also the following:

Theorem 3. If X is an inner product space, then the completion of X is a Hilbert space.

1.5. Examples.

1.5.1. The space BC (E). Suppose E ⊂ Rn . We denote by BC (E) the space of functions
f : E → R which are continuous and bounded. This is a Banach space when equipped
with the norm ∥∥ f

∥∥∞ = sup
x∈E

∣∣ f (x)
∣∣ .

This is called the uniform norm, since convergence f j → f in this norm is nothing else
than uniform convergence on E .

As a particular case, note that if E =Ω, whereΩ⊂Rn is a bounded, open set (as is typical
in our applications), then the boundedness is automatic, hence

BC
(
Ω

)=C
(
Ω

)
,

and the norm is a maximum: ∥∥ f
∥∥∞ = max

x∈Ω

∣∣ f (x)
∣∣ .

Exercise 4. Prove that BC (E) is a Banach space with the uniform norm.

1.5.2. The space C 1
(
Ω

)
. This is the space of functions f ∈C 1(Ω) such that f and all the

first order partials ∂ j f extend continuously to Ω. This is a Banach space if we use the
norm ∥∥ f

∥∥
1,∞ = sup

x∈Ω

∣∣ f (x)
∣∣+ sup

x∈Ω

∣∣∇ f (x)
∣∣ .

Alternatively, we can use the norm∣∣ f
∣∣
1,∞ = sup

x∈Ω

(∣∣ f (x)
∣∣+ ∣∣∇ f (x)

∣∣) .

These two norms are equivalent: Trivially,
∣∣ f

∣∣
1,∞ ≤ ∥∥ f

∥∥
1,∞. To prove the converse in-

equality, let us we write
∥∥ f

∥∥
1,∞ = a+b, where a = supx∈Ω

∣∣ f (x)
∣∣ and b = supx∈Ω

∣∣∇ f (x)
∣∣.

Let us assume b ≤ a. For any ε > 0, we can find x ∈Ω such that a −ε ≤ ∣∣ f (x)
∣∣. Then it

follows that
∥∥ f

∥∥
1,∞ = a+b ≤ 2a ≤ 2

∣∣ f (x)
∣∣+2ε≤ 2

∣∣ f
∣∣
1,∞+2ε. The same argument works

if a ≤ b, and letting ε→ 0, we conclude that (1/2)
∥∥ f

∥∥
1,∞ ≤ ∣∣ f

∣∣
1,∞.

Exercise 5. Prove that C 1
(
Ω

)
is a Banach space with either of the above norms.

1.5.3. The space C k
(
Ω

)
. This is the space of functions f ∈C k (Ω) such that for all |α| ≤ k,

the partial ∂α f extends continuously toΩ. The norm here is∥∥ f
∥∥

k,∞ = ∑
|α|≤k

sup
x∈Ω

∣∣∂α f (x)
∣∣ .

The completeness follows from that of C 1
(
Ω

)
, by an induction argument.

We shall also denote

C∞(
Ω

)= ∞⋂
k=1

C k(
Ω

)
,
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but we do not attempt to define a norm on this space.

1.5.4. The space Lp (Ω). Let 1 ≤ p <∞. The space Lp (Ω) can be defined as the comple-
tion (cf. Theorem 2) of C∞

0 (Ω) with respect to the norm

∥∥ f
∥∥

p =
(∫
Ω

∣∣ f (x)
∣∣p d x

)1/p

.

(This really is a norm on C∞
0 (Ω); the triangle inequality is known as Minkowski’s in-

equality.)

Remark 2. If we use the Lebesgue theory of integration, then Lp (Ω) can be explicitly re-
alized as the space of measurable functions f :Ω→R such that

∥∥ f
∥∥

p <∞. (Identifying,
as usual, functions which are equal except on a set of measure zero.)

Remark 3. If we view L1(Ω) as the completion of C∞
0 (Ω) in the norm ‖·‖1 (instead of

using the Lebesgue theory), we can define a linear functional

I0 : C∞
0 (Ω) →R, I0( f ) =

∫
Ω

f (x)d x.

This functional is bounded, since∣∣I0( f )
∣∣≤ ∫

Ω

∣∣ f (x)
∣∣ d x = ∥∥ f

∥∥
1 .

Therefore, by Theorem 1, I0 has a unique extension to a bounded linear functional I :
L1(Ω) →R, and it is natural to use the notation

I ( f ) =
∫
Ω

f (x)d x.

The right hand side is then the Lebesgue integral. (Of course, defining the integral ab-
stractly like this is easy, but it certainly does not mean that the explicit construction of
the Lebesgue integral can be avoided in all situations; the main strength of this theory
is in the convergence theorems!)

Remark 4. The case p = 2 is of particular importance, since L2(Ω) is a Hilbert space.
Indeed, the norm

∥∥ f
∥∥

2 is associated to the inner product〈
f , g

〉= ∫
Ω

f (x)g (x)d x.

2. SOBOLEV SPACES

The space C k
(
Ω

)
is not well suited if we want to apply techniques from functional anal-

ysis to the study of PDEs. In fact, this space is too restrictive: usually we are not able
to prove the estimates that would be needed. Instead, a larger, less restrictive space is
better suited: the Sobolev space. Then one typically splits the problem of solving the
PDE into two steps:

(i) prove existence of solutions in a Sobolev space (weak solutions, possibly);

(ii) prove that the solutions are in fact more regular, for suitable regular data.

We shall focus on step (i) in the remainder of this course; (ii) is usually more diffi-
cult.
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2.1. Basic definitions. The idea of the Sobolev spaces is this: Consider the spaces C k
(
Ω

)
,

with the norm
∑

|α|≤k

∥∥∂α f
∥∥∞. If we replace the uniform norm by the Lp norm for some

1 ≤ p <∞, we get a Sobolev space. For our present purposes it will be enough to con-
sider only the case where k = 1 and p = 2.

We shall assume throughout thatΩ is a bounded domain in Rn . (This is not at all essen-
tial for defining the Sobolev spaces, but it suffices for our purposes, and it simplifies the
presentation.)

Definition 5. H 1
0 (Ω) is the completion of C∞

0 (Ω) with respect to the norm (here the
subscript 1 stands for one derivative, and 2 reflects the fact that we use the L2 norm)

∥∥ f
∥∥

1,2 =
(∫
Ω

f (x)2 + ∣∣∇ f (x)
∣∣2 d x

)1/2

=
(∥∥ f

∥∥2
L2(Ω) +

n∑
j=1

∥∥∂ j f
∥∥2

L2(Ω)

)1/2

,

which is the norm associated to the inner product〈
f , g

〉
1 =

∫
Ω

f (x)g (x)+∇ f (x) ·∇g (x)d x.

Definition 6. H 1(Ω) is the completion of C∞(
Ω

)
with respect to the norm

∥∥ f
∥∥

1,2.

Note that both H 1
0 (Ω) and H 1(Ω) are Hilbert spaces (cf. Theorem 3). Note also that

H 1
0 (Ω) ⊂ H 1(Ω) ⊂ L2(Ω) (cf. Remark 1). Intuitively, we can think of H 1

0 (Ω) as the space
of f ∈ H 1(Ω) such that f = 0 on the boundary ∂Ω. This is made more precise in the
following remark.

Remark 5. (Boundary values of f ∈ H 1(Ω).) Since we want to study the Dirichlet prob-
lems, it is important to know that it makes sense to talk about the boundary values of a
function f ∈ H 1(Ω). In fact, let us define

T0 : C∞(
Ω

)→C∞(∂Ω), T f = f |∂Ω.

It is not very hard to show that if ∂Ω is smooth, then∥∥T0 f
∥∥

L2(∂Ω) ≤CΩ
∥∥ f

∥∥
1,2 for all f ∈C∞(

Ω
)
,

where the L2 norm on the left side is defined using the surface area element dS on ∂Ω.
Thus, T0 extends uniquely to a bounded linear map T : H 1(Ω) → L2(∂Ω), called the trace
operator. We can think of T f as the boundary values f |∂Ω of f . One can now show:

Theorem 4. If Ω has smooth boundary, then H 1
0 (Ω) = {

f ∈ H 1(Ω) : T f = 0
}
.

(In fact, the inclusion ⊂ is trivial, but the converse is not!)

2.2. Weak derivatives. If f ∈ H 1(Ω), then f has “weak” (or distributional) first order
partial derivatives in L2(Ω). Indeed, by density there exists a sequence { f j } ⊂ C∞(

Ω
)

such that
∥∥ f j − f

∥∥
1,2 → 0 as j →∞. In particular, this means that for each k = 1, . . . ,n,

the sequence {∂k f j } is Cauchy in L2(Ω), hence it converges to some gk ∈ L2(Ω). So now
we have:

f j → f , ∂k f j → gk in L2(Ω), as j →∞.

We claim that gk is the weak (or distributional) derivative of f with respect to xk . To see
this, pick any test function φ ∈C∞

0 (Ω). Then by integration by parts,∫
Ω

f j (x)∂k v(x)d x =−
∫
Ω
∂k f j (x)v(x)d x,
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or, equivalently, denoting the L2 inner product by 〈 ·, · 〉,〈
f j ,∂k v

〉=−〈
∂k f j , v

〉
.

Letting j → ∞, we then get (using the fact that 〈 ·, v 〉 and 〈 ·,∂k v 〉 are bounded linear
functionals on L2(Ω)!) 〈

f ,∂k v
〉=−〈

∂k f , v
〉

,

or, equivalently, ∫
Ω

f (x)∂k v(x)d x =−
∫
Ω
∂k f (x)v(x)d x.

This proves that ∂k f = gk in the weak sense (the sense of distributions), and we then
conclude: If f ∈ H 1(Ω), then f ,∂1 f , . . . ,∂n f all belong to L2(Ω).

Remark 6. Another way to express the last statement is that H 1(Ω) ⊂ W 1,2(Ω), where
(this is a standard definition)

W 1,2(Ω) = {
f ∈ L2(Ω) : ∂k f ∈ L2(Ω), k = 1, . . . ,n

}
,

the derivatives being taken in the distributional sense. We use the norm
∥∥ f

∥∥
1,2 on this

space. In fact, one can show that ifΩ is a “nice” domain (for example, if the boundary is
smooth), then the converse inclusion also holds, i.e., we have

H 1(Ω) =W 1,2(Ω).

The advantage of this is that it gives an explicit realization of the space H 1(Ω), instead
of the abstract realization as a completion.

2.3. Poincaré’s inequality.

Theorem 5. If Ω is bounded, there exists C =C (Ω) > 0 such that∥∥ f
∥∥

L2(Ω) ≤C
∥∥∇ f

∥∥
L2(Ω) for all f ∈ H 1

0 (Ω).

See McOwen (Theorem 6.2.1) for a short proof.

As a consequence of this inequality, we see that if Ω is bounded, then on the space
H 1

0 (Ω), the norms ∥∥ f
∥∥

1,2 =
(∫
Ω

∣∣ f (x)
∣∣2 + ∣∣∇ f (x)

∣∣2 d x

)1/2

and ∣∣ f
∣∣
1,2 =

(∫
Ω

∣∣∇ f (x)
∣∣2 d x

)1/2

are equivalent. These norms are associated to the inner products, respectively,〈
f , g

〉
1 =

∫
Ω

f (x)g (x)+∇ f (x) ·∇g (x)d x

and

( f , g )1 =
∫
Ω
∇ f (x) ·∇g (x)d x.

Thus, for all practical purposes we are free to choose which one of these norms (or inner
products) we want to use on H 1

0 (Ω), assumingΩ is bounded. This will be used again and
again in our applications.
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2.4. Weak solutions of Poisson’s equation. Let Ω be a bounded domain in Rn with
smooth boundary. We consider the Dirichlet problem for Poisson’s equation,

(2)

{
∆u = f inΩ,

u = 0 on ∂Ω,

where

f ∈ L2(Ω)

is given.

Because of the Dirichlet boundary condition, the space H 1
0 (Ω) is a natural place to look

for solutions of this problem. Indeed, if u ∈ H 1
0 (Ω), then the boundary condition is al-

ready satisfied, so we only have to worry about satisfying the equation∆u = f , in a weak
sense. To find the correct weak formulation, let us first assume that u is classical so-
lution. Then performing one integration by parts, we find that for every test function
v ∈C∞

0 (Ω), ∫
Ω
∆u(x)v(x)d x =−

∫
Ω
∇u(x) ·∇v(x)d x.

But the right hand side makes sense for all u ∈ H 1(Ω), since such a u has weak first order
partial derivatives in L2(Ω). Also, the left hand side should equal

∫
Ω f v d x. Therefore,

we arrive at the following:

Definition 7. We say that u ∈ H 1
0 (Ω) is a weak solution of the Dirichlet problem (2) if

−
∫
Ω
∇u(x) ·∇v(x)d x =

∫
Ω

f (x)v(x)d x for all v ∈C∞
0 (Ω).

Note that this can be restated as:

(u, v)1 =−F (v) for all v ∈C∞
0 (Ω),

with notation as in §2.3, and with

F (v) =
∫
Ω

f (x)v(x)d x = 〈
f , v

〉
.

By the Cauchy-Schwarz inequality in L2(Ω),

|F (v)| ≤C ‖v‖2 ≤C ‖v‖1,2 (C = ∥∥ f
∥∥

2),

so F is a bounded linear functional on H 1
0 (Ω). But then, applying the Riesz represen-

tation theorem with (·, ·)1 as the inner product on H 1
0 (Ω) (cf. §2.3), and using also the

symmetry of the inner product, we immediately conclude:

Theorem 6. For any f ∈ L2(Ω), the Dirichlet problem (2) has a unique weak solution
u ∈ H 1

0 (Ω).

We shall not here consider the more difficult problem of regularity, but let it be said that
if f ∈C∞(

Ω
)
, then also u ∈C∞(

Ω
)
. See chapter 8 of McOwen for this.

Next, consider more general Dirichlet boundary conditions:

(3)

{
∆u = f inΩ,

u = g on ∂Ω.
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Let us assume that g extends to a C 2 function onΩ, i.e., assume g ∈C 2
(
Ω

)
. Then chang-

ing variables to

w = u − g ,

we transform (3) to a problem of the same form as (2), namely

(4)

{
∆w = f̃ inΩ,

w = 0 on ∂Ω,

where

f̃ = f −∆g .

By Theorem 6, the latter problem has a weak solution w ∈ H 1
0 (Ω). Changing variables

back, we then get u = w + g as a weak solution of the original problem (3).

2.5. More general elliptic equations. The method from §2.4 can be applied also to the
Dirichlet problem for more general elliptic equations. Specifically, consider a second
order differential operator of divergence form, i.e.,

Lu(x) =
n∑

i , j=1
∂i

(
ai j (x)∂ j u(x)

)+ c(x)u(x),

where ai j ,c ∈C∞(
Ω

)
. Moreover, we impose the symmetry assumption

(5) ai j = a j i (i , j = 1, . . . ,n),

and the uniform ellipticity assumption

(6)
n∑

i , j=1
ai j (x)ξiξ j ≥ ε |ξ|2 for all x ∈Ω and ξ ∈Rn ,

for some constant ε> 0.

Remark 7. The Laplace operator ∆ corresponds to the special case where (ai j ) is the
identity matrix and c = 0.

Now consider the Dirichlet problem

(7)

{
Lu = f inΩ,

u = 0 on ∂Ω,

where f ∈ L2(Ω) is given.

We would like to solve this by the same method that was used for Poisson’s equation in
§2.4. Starting from a smooth solution and integrating by parts, we see that the natural
definition of a weak solution is the following:

Definition 8. We say that u ∈ H 1
0 (Ω) is a weak solution of (7) if∫

Ω

(
−

n∑
i , j=1

ai j (x)∂i u(x)∂ j v(x)+ c(x)u(x)v(x)

)
d x =

∫
Ω

f (x)v(x)d x

for all v ∈C∞
0 (Ω).
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It will be convenient to restate the condition for a weak solution as follows:

(8) B(u, v) =−F (v) for all v ∈C∞
0 (Ω),

where

B(u, v) =
∫
Ω

(
n∑

i , j=1
ai j (x)∂i u(x)∂ j v(x)− c(x)u(x)v(x)

)
d x,

F (v) =
∫
Ω

f (x)v(x)d x.

We already know from §2.4 that F is a bounded linear functional on H 1
0 (Ω), so if it hap-

pens that B(u, v) is an inner product on H 1
0 (Ω) whose associated norm is equivalent to

the standard norm on H 1
0 (Ω), then existence follows immediately from the Riesz repre-

sentation theorem.

So we need to investigate under which conditions B(u, v) meets these criteria. First, it
is clear that B(u, v) is linear in both u and v . Second, by the symmetry assumption (5),
we evidently have

B(u, v) = B(v,u).

The only remaining condition for B(u, v) to be an inner product is that B(u,u) ≥ 0, with
equality if and only if u = 0. But by the ellipticity assumption (6),

B(u,u) ≥
∫
Ω

(
ε |∇u(x)|2 − c(x) |u(x)|2 )

d x

≥
∫
Ω

(
ε |∇u(x)|2 −γ |u(x)|2 )

d x

= ε‖∇u‖2
L2(Ω) −γ‖u‖2

L2(Ω) ,

where

γ= max
x∈Ω

c(x).

Therefore, if γ ≤ 0, we have B(u,u) ≥ ε‖∇u‖2
L2(Ω)

. On the other hand, if γ > 0, then

applying Poincaré’s inequality (Theorem 5) gives B(u,u) ≥ (ε−C 2γ)‖∇u‖2
L2(Ω)

, where C

is the constant in Poincaré’s inequality.

Therefore, if we impose the condition

(9) γ= max
x∈Ω

c(x) < ε

C 2 ,

then for some δ> 0,

(10) B(u,u) ≥ δ‖∇u‖2
L2(Ω) = δ |u|21,2 ,

for all u ∈ H 1
0 (Ω); here we use the notation introduced §2.3. (Specifically, δ = ε if γ ≤ 0,

and δ= εC 2 −γ if γ> 0.)

Next, we estimate B(u,u) from above. Since the coefficients ai j and c are bounded

(being continuous functions on the compact setΩ), there exists M > 0 such that

(11) B(u,u) ≤ M ‖u‖2
1,2 ,

for all u ∈ H 1
0 (Ω).
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Since |·|1,2 and ‖·‖1,2 are equivalent norms on H 1
0 (Ω) (cf. §2.3), we can conclude from

(10) and (11) that these norms are also equivalent to the norm associated to the inner
product B(u, v), assuming (9) is satisfied.

Appealing to the Riesz representation theorem, we thus obtain:

Theorem 7. If (9) is satisfied, then (7) has a unique weak solution u ∈ H 1
0 (Ω).

Remark 8. We are not saying that the condition (9) is necessary, only that it is sufficient.
However, some kind of condition on c(x) is certainly necessary, as there are choices of
c(x) such that (7) is not solvable for all f . For example, this is the case if c(x) is constant
and equals one of the Dirichlet eigenvalues of −L. In fact, condition (9) says that γ/ε is
less than the smallest eigenvalue of −L (which is positive). (Cf. Section 7.2.b in McOwen
for the case L =∆.)

Remark 9. Even more general operators L can be treated if we use the Lax-Milgram
lemma instead of the Riesz representation theorem. See chapter 6 of McOwen.


