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Last week we proved existence of weak solutions of the Dirichlet problem for a class
of elliptic operators (in particular, for the Laplace operator), by using the Riesz repre-
sentation theorem. This method, however, is limited to linear PDEs. It is therefore of
interest to study more robust methods, which can be applied also to nonlinear PDEs.
One such method is to obtain the solution to the PDE as a minimizer of a functional
(typically some kind of energy functional). We will encounter this method in chapter
7 of McOwen, but for this we shall require some further tools from functional analysis,
namely some “compactness” results.

To motivate this, let us first recall that in a finite-dimensional vector space such as Rn ,
every bounded sequence has a convergent subsequence. This property fails in infinite-
dimensional spaces, but there are ways to fix this: For example, we can look for addi-
tional conditions on a sequence which guarantee that it does have a convergent subse-
quence, or we can settle for a weaker type of convergence than norm convergence.

Let us start with a discussion of weak convergence.

1. WEAK CONVERGENCE

Definition 1. A sequence {x j } in a normed space X is said to be weakly convergent if
there exists x ∈ X such that for every F ∈ X ∗, we have F (x j ) → F (x) as j →∞. We then
call x the weak limit of the sequence.

To distinguish weak convergence from the standard convergence in norm, i.e.,
∥∥x j −x

∥∥→
0 as j →∞, the latter is sometimes called strong convergence.

Remark 1. Let us note that

(i) strong convergence =⇒ weak convergence;

(ii) in a finite-dimensional space, weak convergence ⇐⇒ strong convergence;

(iii) the weak limit, if it exists, is unique;

(iv) if {x j } converges weakly, then {‖x j ‖} is a bounded sequence.

We skip the proofs of these assertions; see any book on functional analysis.

Let us now specialize to a Hilbert space H (infinite-dimensional, of course), which is
what we need for our applications. Recalling that H∗ consists precisely of the function-
als of the form

〈 ·, y
〉

, where y ∈ H , we conclude that

x j → x weakly in H ⇐⇒ 〈
x j , y

〉→ 〈
x, y

〉
for all y ∈ H .
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Here is a classic example, showing that weak convergence does not imply strong con-
vergence, in an infinite-dimensional space.

Example 1. Consider the space l 2(N) of sequences {αn} ⊂R such that
∑∞

n=1α
2
n <∞. This

is a Hilbert space when equipped with the inner product
〈

{αn}, {βn}
〉=∑∞

n=1αnβn ; the

associated norm is ‖{αn}‖ = (∑∞
n=1α

2
n

)1/2
. Let en ∈ l 2(N) be the sequence consisting of

all zeros except in the n-place, where the value is 1. Then {en}∞n=1 is an orthonormal
basis for l 2(N). We claim that en converges weakly to zero. Indeed, if y = {αn} ∈ l 2(N),
then

∑∞
n=1α

2
n <∞, so we must have αn → 0 as n →∞. But〈

en , y
〉=αn ,

so we conclude that en → 0 weakly in l 2(N). On the other hand, en certainly does not
converge in norm; if it did, it would have to be Cauchy, but using the orthonormality we
have ‖αn −αm‖2 = 2 for all n 6= m, so it is not Cauchy.

We shall need the following fundamental result:

Theorem 1. (Weak compactness in a Hilbert space.) In a Hilbert space H, every bounded
sequence has a weakly convergent subsequence.

The proof is left as one of the exercises for this week (see the end of these notes).

Note that the above theorem applies to the Sobolev spaces H 1
0 (Ω) and H 1(Ω), which are

Hilbert spaces.

2. COMPACTNESS IN THE UNIFORM NORM: THE ARZELÀ-ASCOLI THEOREM

LetΩ⊂Rn be a bounded domain with smooth boundary, and let us denote the uniform
norm by ∥∥ f

∥∥∞ = sup
x∈Ω

∣∣ f (x)
∣∣ .

We shall need the following special case of the classic Arzelà-Ascoli theorem:

Theorem 2. Assume { f j } ⊂C 1
(
Ω

)
is uniformly bounded, i.e., there exists M > 0 such that∥∥ f j

∥∥∞+∥∥∇ f j
∥∥∞ ≤ M for all j .

Then { f j } has a subsequence which converges uniformly onΩ.

Proof. To avoid some subtle topological issues, we shall assume that Ω is convex (this
is enough for our applications of this theorem). Thus, if x, y ∈Ω, then the line segment
between x and y is assumed to be completely contained inΩ, and therefore

(1)
∣∣ f j (x)− f j (y)

∣∣= ∣∣∣∣∫ 1

0
∇ f j (x + t [x − y]) · (x − y)d t

∣∣∣∣≤ M
∣∣x − y

∣∣ ,

for all j ∈N. By continuity, this inequality also holds for all x, y in the closureΩ.

Now pick a dense countable subset {x j } of Ω. Since { f j (x1)} is bounded in R, this se-
quence has a convergent subsequence, which we denote f 1

j (x1), converging to a limit
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which we denote f (x1). Next, we repeat the procedure on the sequence f 1
j (x2), extract-

ing a subsequence f 2
j (x2) converging to a number f (x2). Continuing in this way, we get

a double sequence of functions { f k
j }∞j ,k=1, which we can organize in an infinite matrix

f 1
1 f 1

2 f 1
3 · · ·

f 2
1 f 2

2 f 2
3 · · ·

f 3
1 f 3

2 f 3
3 · · ·

...
...

...
. . .

By construction, this has the properties that (i) the k-th row converges when evaluated
on xk , i.e., lim j→∞ f k

j (xk ) = f (xk ), and (ii) each row is a subsequence of the previous
row.

Now we use Cantor’s diagonal trick: we consider the diagonal sequence f j
j , which has

the nice property that it is eventually a subsequence of every one of the rows in the

above matrix. To be precise, { f j
j }∞j=k is a subsequence of the k-th row. By the properties

(i) and (ii) above, we can therefore conclude that

(2) lim
j→∞

f j
j (xk ) = f (xk ) for all k.

Next, we prove that f j
j (x) is Cauchy (and hence converges) for all x ∈ Ω. So fix x ∈ Ω,

and let ε> 0. By density, there exists m ∈N such that

(3) |x −xm | ≤ ε

3M
.

Since { f j
j (xm)} is Cauchy in R, by (2), we can find N (ε, xm) ∈N such that

(4)
∣∣∣ f j

j (xm)− f k
k (xm)

∣∣∣≤ ε

3
for all j ,k ≥ N (ε, xm).

Using (1), (3) and (4), we now find∣∣∣ f j
j (x)− f k

k (x)
∣∣∣≤ ∣∣∣ f j

j (x)− f j
j (xm)

∣∣∣+ ∣∣∣ f j
j (xm)− f k

k (xm)
∣∣∣+ ∣∣∣ f k

k (xm)− f k
k (x)

∣∣∣
≤ M |x −xm |+ ε

3
+M |x −xm |

≤ ε

3
+ ε

3
+ ε

3
= ε,

for all j ,k ≥ N (ε, xm).

So now we know that f j
j (x) converges for all x ∈Ω, and it only remains to show that the

convergence is uniform. For this, we use the fact that Ω is compact. Therefore, given
ε > 0, we can cover Ω by finitely many balls of the type (3), centered at x1, . . . , xm , say.
Then the argument above shows that∣∣∣ f j

j (x)− f k
k (x)

∣∣∣≤ ε

for all x ∈Ω and for all

j ,k ≥ max
(
N (ε, x1), . . . , N (ε, xm)

)
.

This proves the uniform convergence. �
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The following general terminology is quite convenient: Suppose X and Y are normed
spaces with X ⊂ Y , and that the inclusion map is bounded, i.e., ‖x‖Y ≤ C ‖x‖X for all
x ∈ X . If every bounded sequence in X has a subsequence which converges in Y , then
we say that the inclusion X ⊂ Y is compact. Note carefully that the subsequence need
not converge in the X -norm, only in the Y -norm.

A quick way to state the above theorem is then: The inclusion C 1
(
Ω

) ⊂ C
(
Ω

)
is com-

pact.

3. COMPACTNESS OF THE INCLUSION H 1
0 (Ω) ⊂ L2(Ω)

Recall that we defined both L2(Ω) and H 1
0 (Ω) as completions of C∞

0 (Ω), with respect to
the norms, respectively, ∥∥ f

∥∥
2 =

(∫
Ω

∣∣ f (x)
∣∣2 d x

)1/2

,

∥∥ f
∥∥

1,2 =
(∫
Ω

∣∣ f (x)
∣∣2 + ∣∣∇ f (x)

∣∣2 d x

)1/2

.

Since
∥∥ f

∥∥
2 ≤

∥∥ f
∥∥

1,2, if follows by our construction of the completion (see the notes from

last week) that H 1
0 (Ω) ⊂ L2(Ω), and that the inclusion map is bounded. Our aim now is

to prove that this inclusion is in fact compact.

Rellich’s Theorem. AssumeΩ is a bounded domain inRn . Then every bounded sequence
in H 1

0 (Ω) has a subsequence which converges in L2(Ω).

To prove this, we shall need to use a mollifier. Let ρ : Rn → [0,∞) be a function which
is C∞, supported in the unit ball in Rn , and satisfies

∫
Rn ρ(x)d x = 1. For example, the

function

ρ(x) =
{

Ce
− 1

1−|x|2 for |x| < 1,

0 for |x| ≥ 1,

is C∞, and by choosing C appropriately we can make
∫
Rn ρ(x)d x = 1.

For h > 0 we then define

ρh(x) = 1

hn ρ
( x

h

)
.

Note that ρh is supported in the ball |x| ≤ h, and that (by a change of variables)

(5)
∥∥ρh

∥∥
1 =

∫
Rn
ρh(x)d x =

∫
Rn
ρ(x)d x = 1,

for all h > 0.

If f :Rn →R, we define, for h > 0,

f h(x) = ρh ∗ f (x) =
∫
Rn

f (x − y)ρh(y)d y =
∫
Rn

f (y)ρh(x − y)d y,

provided this integral exists.

The family {ρh}h>0 is called a mollifier, and f h is called the mollification of f . The reason
for this terminology is that convolution with ρh tends to smooth out the function f .
Think of f h(x) as a kind of average of the values of f in a small neighborhood of radius
h around x, with ρh as weight function. This average tends to be smoother than f (if f is
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not smooth already), but it should also get closer and closer to f as h → 0, since ρh then
converges to the Dirac distribution δ, which we know has the property that δ∗ f = f .
See Theorem 3 in Section 6.5 of McOwen for some precise statements along these lines.
Here, however, we shall only need two very simple properties. The first one is:

Lemma 1. If f ∈C 1
0 (Rn), then ∥∥∥ f h − f

∥∥∥
2
≤ ∥∥∇ f

∥∥
2 h.

Here ‖·‖2 denotes the norm on L2(Rn).

Proof. Using (5) we can write∣∣∣ f h(x)− f (x)
∣∣∣= ∣∣∣∣∫

Rn

[
f (x − y)− f (x)

]
ρh(y)d y

∣∣∣∣
=

∣∣∣∣∫|y|≤h

(∫ 1

0
∇ f (x − t y) · y d t

)
ρh(y)d y

∣∣∣∣
≤

∫
|y|≤h

∫ 1

0

∣∣∇ f (x − t y)
∣∣ ∣∣y

∣∣ρh(y)d t d y

≤ h
∫ 1

0

∫
|y|≤h

∣∣∇ f (x − t y)
∣∣ρh(y)d y d t .

Therefore, by Minkowski’s integral inequality,1∥∥∥ f h − f
∥∥∥

2
≤ h

∫ 1

0

∫
|y|≤h

∥∥∇ f (·− t y)
∥∥

2ρh(y)d y d t

= h
∥∥∇ f

∥∥
2

∫ 1

0

∫
|y|≤h

ρh(y)d y d t

= h
∥∥∇ f

∥∥
2 ,

where we again used (5), and also the fact that
∥∥∇ f (·− z)

∥∥
2 = ∥∥∇ f

∥∥
2 for all z ∈ Rn , by a

change of variables. �

The second property of mollifiers that we need is:

Lemma 2. There exists C =C (ρ) such that for all f ∈ L2(Rn),∥∥∥ f h
∥∥∥∞ ≤C h−n/2 ∥∥ f

∥∥
2 .

Proof. Using the Cauchy-Schwarz inequality, we get for any x ∈Rn ,∣∣∣ f h(x)
∣∣∣≤ ∫

Rn

∣∣ f (x − y)
∣∣ρh(y)d y ≤ ∥∥ f

∥∥
2

∥∥ρh
∥∥

2 ,

and a simple change of variables shows that
∥∥ρh

∥∥
2 =C h−n/2, where C = ∥∥ρ∥∥

2. �

We now have the tools we need to prove the main theorem of this section.

1We use the following special case of this inequality:∥∥∥∥∫
F (·, y)d y

∥∥∥∥
2
≤

∫ ∥∥F (·, y)
∥∥

2 d y.
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Proof of Rellich’s Theorem. We split the proof into two steps.

Step 1. Let { f j } ⊂C∞
0 (Ω), and assume there exists M > 0 such that

(6)
∥∥ f j

∥∥
1,2 ≤ M for all j .

It will be convenient to extend f j by zero outside Ω. For h > 0, define f h
j = ρh ∗ f j .

Observe that if we assume also h ≤ 1, then the f h
j are all supported in a fixed compact

subset of Rn . Thus, in the remainder of the proof, all L2-norms and all uniform norms
can be taken over the whole space Rn .

Applying Lemma 2 to f h
j and also to ∇( f h

j ) = ρh ∗ (∇ f j ), and making use of the bound

(6), we obtain ∥∥∥ f h
j

∥∥∥
1,∞ ≤C h−n/2 for all j and h > 0.

for some constant C independent of j and h. Therefore, for any fixed h > 0, it follows
from the Arzelà-Ascoli theorem (Theorem 2) that { f h

j } has a subsequence which con-

verges uniformly on Rn (recall that our functions are all supported in a fixed compact
set).

Applying the above argument with h = 1/m for m = 1,2, . . . , taking successive subse-
quences, and applying the diagonal argument, we can then find a single subsequence
f jk of f j which works for all h = 1/m. To be precise, we can find a sequence j1 < j2 <
·· · < jk < . . . inNwith the property that

(7) { f h
jk

}∞k=1 is uniformly Cauchy, for every h = 1

m
, m ∈N.

We now claim that f jk converges in L2. By completeness of L2, it suffices to prove that
f jk is Cauchy in the L2-norm. To this end, we write

(8)
∥∥ f jk − f jl

∥∥
2 ≤

∥∥∥ f jk − f h
jk

∥∥∥
2
+

∥∥∥ f h
jk
− f h

jl

∥∥∥
2
+

∥∥∥ f h
jl
− f jl

∥∥∥
2

Let ε> 0. From Lemma 1 and the bound (6), we obtain∥∥∥ f h
jk
− f jk

∥∥∥
2
≤ Mh for all k.

Choose h = 1/m with m ∈ N so large that Mh ≤ ε/3. This guarantees that the first and
third terms on the right hand side of (8) are no larger than ε/3. As for the middle term,
we can estimate it by ∥∥∥ f h

jk
− f h

jl

∥∥∥
2
≤C

∥∥∥ f h
jk
− f h

jl

∥∥∥∞ ,

where C is the square root of the volume of the (fixed) support of our functions. Now
use (7) (with the h chosen above) to conclude that there exists N ∈N such that∥∥∥ f h

jk
− f h

jl

∥∥∥∞ ≤ ε

3C
for all k, l ≥ N .

Thus, the middle term of the right hand side of (8) is no larger than ε/3 if k, l ≥ N , and
we conclude that ∥∥ f jk − f jl

∥∥
2 ≤ ε for all k, l ≥ N .

This concludes Step 1.

Step 2. Assume now that { f j } ⊂ H 1
0 (Ω) is a bounded sequence, so

∥∥ f j
∥∥

1,2 ≤ M for some

M independent of j . By density, we can choose g j ∈C∞
0 (Ω) such that

∥∥ f j − g j
∥∥

1,2 ≤ 1/ j .

Applying Step 1 to the sequence {g j }, for which we have the bound
∥∥g j

∥∥
1,2 ≤ M + 1,
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we then obtain a subsequence g jk which converges in L2 to a function f . But then f jk

clearly also converges to f in L2, and the proof of Rellich’s theorem is complete. �

4. COMPACTNESS OF THE INCLUSION H 1(Ω) ⊂ L2(Ω)

We state the following without proof (see McOwen Section 6.5):

Theorem 3. Suppose Ω ⊂ Rn is a bounded domain with smooth boundary. Then every
bounded sequence in H 1(Ω) has a subsequence which converges in L2(Ω).

Exercises for this week: (from McOwen)

6.1: 5.

6.2: 4.

6.3: 3, 7.


