

TMA4305 Partial Differential Equations Spring 2007

Supplementary notes 2

Here we prove the Proposition in Section 4.2c of McOwen (with an alternative—and correct—proof):

Proposition (Regularity of the potential). Assume $f \in L^1(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is a bounded open set, and *define*

(1)
$$u(x) = \int_{\Omega} K(x - y) f(y) \, dy$$

for $x \in \mathbb{R}^n$ such that the integral exists (note that it certainly exists for $x \in \mathbb{R}^n \setminus \overline{\Omega}$). Here K is the usual fundamental solution of Δ on \mathbb{R}^n . The following regularity statements hold for u:

- (*i*) $u \in C^{\infty}(\mathbb{R}^n \setminus \overline{\Omega})$, and *u* is harmonic in $\mathbb{R}^n \setminus \overline{\Omega}$.
- (ii) If f is bounded on Ω , then u is defined everywhere on \mathbb{R}^n , and $u \in C^1(\mathbb{R}^n)$.
- (iii) If $f \in C^1(\overline{\Omega})$, then $u \in C^2(\Omega)$. [Hence $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$, using also part (ii).]

Remark 1. The space $L^1(\Omega)$ can be defined in two different ways, depending on whether one knows about Lebesgue integration or not. In the Lebesgue theory, it is the space of measurable functions $f: \Omega \to \mathbb{R}$ such that $\int_{\Omega} |f(x)| dx < \infty$; such functions are called *integrable*. If instead we want to refer only to the Riemann integral, we could, as a replacement, define $L^1(\Omega)$ as the space of bounded functions $f: \Omega \to \mathbb{R}$ such that the set $\{x \in \Omega : f \text{ is discontinuous at } x\}$ has measure zero. Then if we assume additionally that Ω has smooth boundary (hence the boundary has measure zero), it is guaranteed that the Riemann integrals $\int_{\Omega} f(x) dx$ and $\int_{\Omega} |f(x)| dx$ exist.

Remark 2. Extend *f* by zero outside Ω ; this extension, which we still denote *f*, is then a compactly supported distribution on \mathbb{R}^n , so by the general theory in Section 2.3.d, we know that u = K * f is a solution of $\Delta u = f$ in $\mathcal{D}'(\mathbb{R}^n)$. It is therefore not surprising that *u* is harmonic outside $\overline{\Omega}$ (cf. part (i) of the Proposition).

In the proof of the proposition we shall use the following facts.

Fact 1. Suppose $g \in C^1(E)$, where $E \subset \mathbb{R}^n$ is an open set. Suppose further that *a* and *b* are two points in *E* such that the line segment between *a* and *b* is completely contained in *E*, i.e.,

$$\{a+t(b-a):t\in[0,1]\}\subset E.$$

Then

$$g(b) - g(a) = \int_0^1 \nabla g \big(a + t(b-a) \big) \cdot (b-a) \, dt.$$

To prove this, just use the fundamental theorem of Calculus to write

$$g(b) - g(a) = \int_0^1 \frac{d}{dt} \left[g \left(a + t(b-a) \right) \right] dt,$$

and notice that by the chain rule, $\frac{d}{dt} \left[g(a + t(b - a)) \right] = \nabla g(a + t(b - a)) \cdot (b - a).$

Fact 2. The following estimates hold:

(2)
$$\int_{|z| \le r} |K(z)| \, dz \le \begin{cases} Cr^2 (1 + |\log r|) & \text{if } n = 2\\ Cr^2 & \text{if } n \ge 3 \end{cases}$$

(3)
$$\int_{|z| \le r} |\nabla K(z)| \, dz \le Cr,$$

(4)
$$\int_{|z|=r} |K(z)| \, dS(z) \leq \begin{cases} Cr(1+|\log r|) & \text{if } n=2, \\ Cr & \text{if } n\geq 3, \end{cases}$$

(5)
$$\int_{|z|=r} |\nabla K(z)| \, dS(z) \le C,$$

where C = C(n) denotes constants which only depend on the dimension *n*. (Note that in the Riemann theory of integration, these integrals are improper.)

Let us prove these for n = 3. Then $K(x) = -\frac{1}{4\pi |x|}$ and $\nabla K(x) = \frac{1}{4\pi |x|^2} \frac{x}{|x|}$, and integrating in spherical coordinates we get

$$\int_{|z| \le r} |K(z)| \, dz \le \int_0^r \int_{|y|=1} \frac{1}{4\pi\rho} \, dS(y) \, \rho^2 \, d\rho = \int_0^r \rho \, d\rho = \frac{1}{2}r^2,$$

and

$$\int_{|z| \le r} |\nabla K(z)| \, dz \le \int_0^r \int_{|y|=1} \frac{1}{4\pi\rho^2} \, dS(y) \, \rho^2 \, d\rho = \int_0^r \, d\rho = r.$$

Also,

$$\int_{|z|=r} |K(z)| \ dS(z) \le \frac{1}{4\pi r} \int_{|z|=r} dS(z) = \frac{1}{4\pi r} (4\pi r^2) = r,$$

and

$$\int_{|z|=r} |\nabla K(z)| \ dS(z) \leq \frac{1}{4\pi r^2} \int_{|z|=r} \ dS(z) = \frac{1}{4\pi r^2} (4\pi r^2) = 1.$$

We leave the calculations in other dimensions as exercises.

Proof of part (i). We claim that for any multi-index α ,

(6)
$$\partial^{\alpha} u(x) = \int_{\Omega} (\partial^{\alpha} K)(x-y) f(y) \, dy \quad \text{for all } x \in \mathbb{R}^n \setminus \overline{\Omega}.$$

Let us show this for $\alpha = e_j$, the *j*-th standard basis vector; the general case follows by the same argument, used repeatedly. First, however, let us note that (6) implies $\Delta u(x) = \int_{\Omega} (\Delta K)(x - y) f(y) dy = 0$ for $x \in \mathbb{R}^n \setminus \overline{\Omega}$, since $\Delta K = 0$ away from the origin.

So now fix $x \in \mathbb{R}^n \setminus \overline{\Omega}$. For $h \neq 0$ define

$$A_h = \frac{u(x+he_j) - u(x)}{h} - \int_{\Omega} (\partial_j K)(x-y) f(y) \, dy.$$

Fix $\varepsilon > 0$. We have to prove there exists $\delta > 0$ such that $|A_h| \le \varepsilon$ for all $0 < |h| \le \delta$. Then it follows that

(7)
$$\partial_j u(x) = \int_{\Omega} (\partial_j K)(x - y) f(y) \, dy,$$

as desired.

Since $\mathbb{R}^n \setminus \overline{\Omega}$ is an open and nonempty set, we can find r > 0 such that $B_r(x) \subset \mathbb{R}^n \setminus \overline{\Omega}$. Thus, $y \in \Omega \implies |x - y| \ge r$. By the triangle inequality, this gives¹

(8)
$$y \in \Omega, |h| \le r/2 \implies |x + he_j - y| \ge r/2.$$

¹We have $|x + he_{j} - y| \ge |x - y| - |he_{j}| = |x - y| - |h| \ge r - r/2 = r/2.$

Also, we choose R > 0 so large that $|x| + |y| + r/2 \le R$ for all $y \in \Omega$; we can do this because Ω is bounded. So then we have $|x + he_j - y| \le R$ for all $y \in \Omega$ and all $|h| \le r/2$, again using the triangle inequality.

Since $\partial_j K(z)$ is uniformly continuous in the set $r/2 \le |z| \le R$, we can now conclude that, given any $\varepsilon' > 0$, there exists $\delta > 0$ (satisfying also $\delta \le r/2$) such that

(9)
$$\left| (\partial_j K)(x + the_j - y)f(y) - (\partial_j K)(x - y) \right| \le \varepsilon' \quad \text{for all } |h| \le \delta \text{ and all } y \in \Omega.$$

In fact, we choose $\varepsilon' > 0$ so small that

(10)
$$\varepsilon' \int_{\Omega} |f(y)| \, dy \le \varepsilon.$$

Using Fact 1 we can write

$$\frac{u(x+he_j) - u(x)}{h} = \int_{\Omega} \frac{K(x+he_j - y) - K(x-y)}{h} f(y) \, dy = \int_{\Omega} \int_0^1 (\partial_j K) (x+the_j - y) f(y) \, dt \, dy,$$

hence for all $0 < |h| \le \delta$, using also (9) and (10), we get

$$\begin{aligned} |A_{h}| &= \left| \int_{\Omega} \int_{0}^{1} \left[(\partial_{j} K)(x + the_{j} - y)f(y) - (\partial_{j} K)(x - y) \right] f(y) dt dy \right| \\ &\leq \int_{\Omega} \int_{0}^{1} \left| (\partial_{j} K)(x + the_{j} - y)f(y) - (\partial_{j} K)(x - y) \right| \left| f(y) \right| dt dy \\ &\leq \varepsilon' \int_{\Omega} \int_{0}^{1} \left| f(y) \right| dt dy = \varepsilon' \int_{\Omega} \left| f(y) \right| dy \leq \varepsilon, \end{aligned}$$

and we are done.

Proof of part (ii). Now we have the additional assumption that $|f(x)| \le M$ for all $x \in \Omega$. Then u(x) is defined everywhere (note that in the Riemann theory of integration, (1) will be an improper integral if $x \in \overline{\Omega}$, but a convergent one).

To prove that $u \in C^1(\mathbb{R}^n)$ we would like to proceed more or less as in the proof of part (i), to show that (7) holds for all $x \in \mathbb{R}^n$, but we need to modify the argument slightly to handle the singularity in K(x - y) when y approaches x (this can happen if $x \in \overline{\Omega}$), since then the uniform continuity fails. But this is not hard: we apply the usual trick of cutting out a small ball around the singularity, and consider that part of the integral separately, using the estimates in Fact 2.

So fix $x \in \overline{\Omega}$ (the set $\mathbb{R}^n \setminus \overline{\Omega}$ is covered by part (i) already), and fix $\varepsilon > 0$. Define A_h as before, and write

$$A_h = \int_{\Omega} \int_0^1 \left[(\partial_j K)(x + the_j - y)f(y) - (\partial_j K)(x - y) \right] f(y) dt dy = I_h + J_h$$

where

$$I_{h} = \int_{\Omega \cap \overline{B_{r}(x)}} \int_{0}^{1} \left[(\partial_{j}K)(x + the_{j} - y)f(y) - (\partial_{j}K)(x - y) \right] f(y) dt dy,$$

$$J_{h} = \int_{\Omega \setminus \overline{B_{r}(x)}} \int_{0}^{1} \left[(\partial_{j}K)(x + the_{j} - y)f(y) - (\partial_{j}K)(x - y) \right] f(y) dt dy,$$

where the small number r > 0 will be chosen in a moment; r will depend on ε .

We now estimate, assuming $0 < |h| \le r$,

$$\begin{split} |I_{h}| &\leq M \int_{B_{r}(x)} \int_{0}^{1} \left[|(\partial_{j}K)(\underbrace{x + the_{j} - y})| + |(\partial_{j}K)(\underbrace{x - y})| \right] dt \, dy \\ &\leq M \left[\int_{|z| \leq 2r} \int_{0}^{1} \left| (\partial_{j}K)(z) \right| \, dt \, dz + \int_{|z| \leq r} \int_{0}^{1} \left| (\partial_{j}K)(z') \right| \, dt \, dz' \right] \\ &\leq 2M \int_{|z| \leq 2r} \left| (\partial_{j}K)(z) \right| \, dz \leq 4MCr, \end{split}$$

where in the last step we used (3) from Fact 2. We now choose *r* such that $4MCr = \varepsilon/2$, i.e.,

$$r = \frac{\varepsilon}{8MC}.$$

So with this choice, we have $|I_h| \le \varepsilon/2$ for all $0 < |h| \le r$.

Having fixed *r*, we now observe that part (i), with Ω replaced by $\Omega \setminus \overline{B_r(x)}$, gives us: There exists $\delta > 0$ (which we can assume is $\leq r$) such that $|J_h| \leq \varepsilon/2$ for all $0 < |h| \leq \delta$.

We conclude that

$$|A_h| \le |I_h| + |J_h| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \qquad \text{whenever } 0 < |h| \le \delta,$$

and this proves (7). We leave it as an exercise to prove that $\partial_j u$ as given by (7) is in fact a continuous function on \mathbb{R}^n .

Proof of part (iii). Now we assume $f \in C^1(\overline{\Omega})$. In particular, f and ∇f are both bounded functions, so we can find M > 0 such that $|f(x)| \le M$ and $|\nabla f(x)| \le M$ for all $x \in \overline{\Omega}$.

Note that the proof in McOwen is flawed, since the integral on the left side at the bottom of p. 115 is divergent for all $x \in \Omega$.

Instead, we argue as follows, to prove that $u \in C^2(\Omega)$. First, by part (ii) we already know that $u \in C^1(\mathbb{R}^n)$, and that for all *x*,

(11)
$$\partial_j u(x) = \int_{\Omega} (\partial_j K) (x - y) f(y) \, dy.$$

Now fix $x \in \Omega$. We would like to integrate by parts in the above integral, to get the derivative onto f. As usual, to avoid the singularity, we cut out a small ball around x. So we write

$$\int_{\Omega} (\partial_j K)(x-y) f(y) \, dy = \int_{B_{\varepsilon}(x)} (\partial_j K)(x-y) f(y) \, dy + \int_{\Omega \setminus B_{\varepsilon}(x)} (-1) \frac{\partial}{\partial y_j} \left[K(x-y) \right] f(y) \, dy \equiv I_{\varepsilon} + J_{\varepsilon},$$

for any $\varepsilon > 0$ so small that $B_{\varepsilon}(x) \subset \Omega$. Using (3) from Fact 2, we see that

$$|I_{\varepsilon}| \leq MC\varepsilon.$$

Integrating by parts in J_{ε} we get

$$J_{\varepsilon} = \int_{\Omega \setminus B_{\varepsilon}(x)} K(x-y) \partial_j f(y) \, dy + \int_{|y-x|=\varepsilon} K(x-y) f(y) v_j \, dS(y) \equiv J_{\varepsilon}^{(1)} + J_{\varepsilon}^{(2)},$$

where v = (y - x)/|y - x| is the outward unit normal on the sphere $B_{\varepsilon}(x)$. By (4) from Fact 2 (here the log can be removed if $n \ge 3$),

$$\left|J_{\varepsilon}^{(2)}\right| \leq MC\varepsilon \left(1 + \left|\log\varepsilon\right|\right).$$

Finally,

$$J_{\varepsilon}^{(1)} = \int_{\Omega} K(x-y)\partial_j f(y) \, dy - \int_{B_{\varepsilon}(x)} K(x-y)\partial_j f(y) \, dy,$$

and by (2) from Fact 2,

$$\left|\int_{B_{\varepsilon}(x)} K(x-y)\partial_{j}f(y)\,dy\right| \leq MC\varepsilon^{2}\left(1+\left|\log\varepsilon\right|\right).$$

Combining the above estimates, and letting $\varepsilon \rightarrow 0$, we conclude that

1 0

$$\partial_j u(x) = \int_{\Omega} (\partial_j K)(x - y) f(y) \, dy = \int_{\Omega} K(x - y) \partial_j f(y) \, dy.$$

But now we can apply part (ii) to the integral on the right, and conclude that $u \in C^2(\Omega)$, with

$$\partial_k \partial_j u(x) = \int_{\Omega} (\partial_k K) (x - y) \partial_j f(y) \, dy.$$

(We leave it as an exercise to show that this is a continuous function of x in Ω .)