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Here we prove the Proposition in Section 4.2c of McOwen (with an alternative—and correct—proof):

Proposition (Regularity of the potential). Assume f ∈ L1(Ω), where Ω ⊂ Rn is a bounded open set, and
define

(1) u(x) =
∫
Ω

K (x − y) f (y)d y

for x ∈ Rn such that the integral exists (note that it certainly exists for x ∈ Rn \Ω). Here K is the usual
fundamental solution of ∆ on Rn . The following regularity statements hold for u:

(i) u ∈C∞(
Rn \Ω

)
, and u is harmonic in Rn \Ω.

(ii) If f is bounded onΩ, then u is defined everywhere on Rn , and u ∈C 1(Rn).

(iii) If f ∈C 1
(
Ω

)
, then u ∈C 2(Ω). [Hence u ∈C 2(Ω)∩C 1

(
Ω

)
, using also part (ii).]

Remark 1. The space L1(Ω) can be defined in two different ways, depending on whether one knows
about Lebesgue integration or not. In the Lebesgue theory, it is the space of measurable functions
f : Ω→ R such that

∫
Ω

∣∣ f (x)
∣∣ d x <∞; such functions are called integrable. If instead we want to refer

only to the Riemann integral, we could, as a replacement, define L1(Ω) as the space of bounded func-
tions f :Ω→ R such that the set {x ∈Ω : f is discontinuous at x} has measure zero. Then if we assume
additionally thatΩ has smooth boundary (hence the boundary has measure zero), it is guaranteed that
the Riemann integrals

∫
Ω f (x)d x and

∫
Ω

∣∣ f (x)
∣∣ d x exist.

Remark 2. Extend f by zero outside Ω; this extension, which we still denote f , is then a compactly
supported distribution on Rn , so by the general theory in Section 2.3.d, we know that u = K ∗ f is a
solution of∆u = f in D′(Rn). It is therefore not surprising that u is harmonic outsideΩ (cf. part (i) of the
Proposition).

In the proof of the proposition we shall use the following facts.

Fact 1. Suppose g ∈C 1(E), where E ⊂ Rn is an open set. Suppose further that a and b are two points in
E such that the line segment between a and b is completely contained in E , i.e.,

{a + t (b −a) : t ∈ [0,1]} ⊂ E .

Then

g (b)− g (a) =
∫ 1

0
∇g

(
a + t (b −a)

) · (b −a)d t .

To prove this, just use the fundamental theorem of Calculus to write

g (b)− g (a) =
∫ 1

0

d

d t

[
g
(
a + t (b −a)

)]
d t ,

and notice that by the chain rule, d
d t

[
g
(
a + t (b −a)

)]=∇g
(
a + t (b −a)

) · (b −a).
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Fact 2. The following estimates hold:∫
|z|≤r

|K (z)| d z ≤
{

Cr 2(1+| logr |) if n = 2,

Cr 2 if n ≥ 3,
(2) ∫

|z|≤r
|∇K (z)| d z ≤Cr,(3)

∫
|z|=r

|K (z)| dS(z) ≤
{

Cr (1+| logr |) if n = 2,

Cr if n ≥ 3,
(4) ∫

|z|=r
|∇K (z)| dS(z) ≤C ,(5)

where C = C (n) denotes constants which only depend on the dimension n. (Note that in the Riemann
theory of integration, these integrals are improper.)

Let us prove these for n = 3. Then K (x) = − 1

4π |x| and ∇K (x) = 1

4π |x|2
x

|x| , and integrating in spherical

coordinates we get ∫
|z|≤r

|K (z)| d z ≤
∫ r

0

∫
|y|=1

1

4πρ
dS(y)ρ2 dρ =

∫ r

0
ρdρ = 1

2
r 2,

and ∫
|z|≤r

|∇K (z)| d z ≤
∫ r

0

∫
|y|=1

1

4πρ2 dS(y)ρ2 dρ =
∫ r

0
dρ = r.

Also, ∫
|z|=r

|K (z)| dS(z) ≤ 1

4πr

∫
|z|=r

dS(z) = 1

4πr
(4πr 2) = r,

and ∫
|z|=r

|∇K (z)| dS(z) ≤ 1

4πr 2

∫
|z|=r

dS(z) = 1

4πr 2 (4πr 2) = 1.

We leave the calculations in other dimensions as exercises.

Proof of part (i). We claim that for any multi-index α,

(6) ∂αu(x) =
∫
Ω

(∂αK )(x − y) f (y)d y for all x ∈Rn \Ω.

Let us show this forα= e j , the j -th standard basis vector; the general case follows by the same argument,
used repeatedly. First, however, let us note that (6) implies ∆u(x) = ∫

Ω(∆K )(x − y) f (y)d y = 0 for x ∈
Rn \Ω, since ∆K = 0 away from the origin.

So now fix x ∈Rn \Ω. For h 6= 0 define

Ah = u(x +he j )−u(x)

h
−

∫
Ω

(∂ j K )(x − y) f (y)d y.

Fix ε> 0. We have to prove there exists δ> 0 such that |Ah | ≤ ε for all 0 < |h| ≤ δ. Then it follows that

(7) ∂ j u(x) =
∫
Ω

(∂ j K )(x − y) f (y)d y,

as desired.

Since Rn \Ω is an open and nonempty set, we can find r > 0 such that Br (x) ⊂ Rn \Ω. Thus, y ∈Ω =⇒∣∣x − y
∣∣≥ r . By the triangle inequality, this gives1

(8) y ∈Ω, |h| ≤ r /2 =⇒ ∣∣x +he j − y
∣∣≥ r /2.

1We have |x +he j − y | ≥ |x − y |− |he j | = |x − y |− |h| ≥ r − r /2 = r /2.
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Also, we choose R > 0 so large that |x|+ ∣∣y
∣∣+ r /2 ≤ R for all y ∈Ω; we can do this becauseΩ is bounded.

So then we have
∣∣x +he j − y

∣∣≤ R for all y ∈Ω and all |h| ≤ r /2, again using the triangle inequality.

Since ∂ j K (z) is uniformly continuous in the set r /2 ≤ |z| ≤ R, we can now conclude that, given any ε′ > 0,
there exists δ> 0 (satisfying also δ≤ r /2) such that

(9)
∣∣(∂ j K )(x + the j − y) f (y)− (∂ j K )(x − y)

∣∣≤ ε′ for all |h| ≤ δ and all y ∈Ω.

In fact, we choose ε′ > 0 so small that

(10) ε′
∫
Ω

∣∣ f (y)
∣∣ d y ≤ ε.

Using Fact 1 we can write

u(x +he j )−u(x)

h
=

∫
Ω

K (x +he j − y)−K (x − y)

h
f (y)d y =

∫
Ω

∫ 1

0
(∂ j K )(x + the j − y) f (y)d t d y,

hence for all 0 < |h| ≤ δ, using also (9) and (10), we get

|Ah | =
∣∣∣∣∫
Ω

∫ 1

0

[
(∂ j K )(x + the j − y) f (y)− (∂ j K )(x − y)

]
f (y)d t d y

∣∣∣∣
≤

∫
Ω

∫ 1

0

∣∣(∂ j K )(x + the j − y) f (y)− (∂ j K )(x − y)
∣∣ ∣∣ f (y)

∣∣ d t d y

≤ ε′
∫
Ω

∫ 1

0

∣∣ f (y)
∣∣ d t d y = ε′

∫
Ω

∣∣ f (y)
∣∣ d y ≤ ε,

and we are done.

Proof of part (ii). Now we have the additional assumption that | f (x)| ≤ M for all x ∈ Ω. Then u(x) is
defined everywhere (note that in the Riemann theory of integration, (1) will be an improper integral if
x ∈Ω, but a convergent one).

To prove that u ∈ C 1(Rn) we would like to proceed more or less as in the proof of part (i), to show that
(7) holds for all x ∈Rn , but we need to modify the argument slightly to handle the singularity in K (x − y)
when y approaches x (this can happen if x ∈Ω), since then the uniform continuity fails. But this is not
hard: we apply the usual trick of cutting out a small ball around the singularity, and consider that part
of the integral separately, using the estimates in Fact 2.

So fix x ∈Ω (the set Rn \Ω is covered by part (i) already), and fix ε> 0. Define Ah as before, and write

Ah =
∫
Ω

∫ 1

0

[
(∂ j K )(x + the j − y) f (y)− (∂ j K )(x − y)

]
f (y)d t d y = Ih + Jh ,

where

Ih =
∫
Ω∩Br (x)

∫ 1

0

[
(∂ j K )(x + the j − y) f (y)− (∂ j K )(x − y)

]
f (y)d t d y,

Jh =
∫
Ω\Br (x)

∫ 1

0

[
(∂ j K )(x + the j − y) f (y)− (∂ j K )(x − y)

]
f (y)d t d y,

where the small number r > 0 will be chosen in a moment; r will depend on ε.

We now estimate, assuming 0 < |h| ≤ r ,

|Ih | ≤ M
∫

Br (x)

∫ 1

0

[
|(∂ j K )(x + the j − y︸ ︷︷ ︸

=z

)|+ |(∂ j K )(x − y︸ ︷︷ ︸
=z ′

)|
]

d t d y

≤ M

[∫
|z|≤2r

∫ 1

0

∣∣(∂ j K )(z)
∣∣ d t d z +

∫
|z|≤r

∫ 1

0

∣∣(∂ j K )(z ′)
∣∣ d t d z ′

]
≤ 2M

∫
|z|≤2r

∣∣(∂ j K )(z)
∣∣ d z ≤ 4MCr,
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where in the last step we used (3) from Fact 2. We now choose r such that 4MCr = ε/2, i.e.,

r = ε

8MC
.

So with this choice, we have |Ih | ≤ ε/2 for all 0 < |h| ≤ r .

Having fixed r , we now observe that part (i), with Ω replaced by Ω \ Br (x), gives us: There exists δ > 0
(which we can assume is ≤ r ) such that |Jh | ≤ ε/2 for all 0 < |h| ≤ δ.

We conclude that
|Ah | ≤ |Ih |+ |Jh | ≤

ε

2
+ ε

2
= ε whenever 0 < |h| ≤ δ,

and this proves (7). We leave it as an exercise to prove that ∂ j u as given by (7) is in fact a continuous
function on Rn .

Proof of part (iii). Now we assume f ∈ C 1
(
Ω

)
. In particular, f and ∇ f are both bounded functions, so

we can find M > 0 such that | f (x)| ≤ M and |∇ f (x)| ≤ M for all x ∈Ω.

Note that the proof in McOwen is flawed, since the integral on the left side at the bottom of p. 115 is
divergent for all x ∈Ω.

Instead, we argue as follows, to prove that u ∈C 2(Ω). First, by part (ii) we already know that u ∈C 1(Rn),
and that for all x,

(11) ∂ j u(x) =
∫
Ω

(∂ j K )(x − y) f (y)d y.

Now fix x ∈Ω. We would like to integrate by parts in the above integral, to get the derivative onto f . As
usual, to avoid the singularity, we cut out a small ball around x. So we write∫

Ω
(∂ j K )(x − y) f (y)d y =

∫
Bε(x)

(∂ j K )(x − y) f (y)d y +
∫
Ω\Bε(x)

(−1)
∂

∂y j

[
K (x − y)

]
f (y)d y ≡ Iε+ Jε,

for any ε> 0 so small that Bε(x) ⊂Ω. Using (3) from Fact 2, we see that

|Iε| ≤ MCε.

Integrating by parts in Jε we get

Jε =
∫
Ω\Bε(x)

K (x − y)∂ j f (y)d y +
∫
|y−x|=ε

K (x − y) f (y)ν j dS(y) ≡ J (1)
ε + J (2)

ε ,

where ν= (y −x)/|y −x| is the outward unit normal on the sphere Bε(x). By (4) from Fact 2 (here the log
can be removed if n ≥ 3), ∣∣J (2)

ε

∣∣≤ MCε
(
1+ ∣∣logε

∣∣) .

Finally,

J (1)
ε =

∫
Ω

K (x − y)∂ j f (y)d y −
∫

Bε(x)
K (x − y)∂ j f (y)d y,

and by (2) from Fact 2, ∣∣∣∣∫
Bε(x)

K (x − y)∂ j f (y)d y

∣∣∣∣≤ MCε2 (
1+ ∣∣logε

∣∣) .

Combining the above estimates, and letting ε→ 0, we conclude that

∂ j u(x) =
∫
Ω

(∂ j K )(x − y) f (y)d y =
∫
Ω

K (x − y)∂ j f (y)d y.

But now we can apply part (ii) to the integral on the right, and conclude that u ∈C 2(Ω), with

∂k∂ j u(x) =
∫
Ω

(∂k K )(x − y)∂ j f (y)d y.

(We leave it as an exercise to show that this is a continuous function of x inΩ.)
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