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Supplementary Problem Set 1

1 Solve using the method of characteristics:

(a) xux + yuy = 2u, u(x,1) = g (x).

(b) uux +uy = 1, u(x, x) = x/2.

2 Solve Burgers’ equation
ut +uux = 0

for t > 0, with initial condition

u(x,0) =


1 if x <−1,

0 if −1 < x < 0,

2 if 0 < x < 1,

0 if x > 1.

Moreover, we require that u satisfy the condition ul > ur across a shock. (This is called the entropy
condition, and it can be justified on physical grounds. It also ensures uniqueness of the solution.
Cf. Section 1.2.b in McOwen, and the Remark at the end of that section.)

Draw a picture of the shocks and characteristics in the (x, t )-plane.

3 Let u(x, t ) be the solution to the Cauchy problem

ut + cux +u2 = 0, u(x,0) = x,

where c is a constant.

(a) Solve the problem.

(b) A person leaves the point x0 at time t = 0, and moves in the positive x-direction with speed c
(i.e., the quantity x −ct is fixed for him). Show that if x0 > 0, then the solution as seen by this
person approaches zero as t →∞.

(c) What will be observed by such a person if x0 < 0 or x0 = 0?

4 (a) Show that the following equation is hyperbolic:

uxx +6ux y −16uy y = 0.

(b) Transform the equation to canonical coordinates.

(c) Find the general solution u(x, y).

(d) Find a solution that satisfies u(−x,2x) = x and u(x,0) = sin2x.
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5 Solve the problem

ut t −4uxx = ex + sin t , u(x,0) = 0, ut (x,0) = 1

1+x2 ,

for x ∈R, t ∈R.

6 Do Exercise 2.3.16 from McOwen.

7 The purpose of this exercise is to prove that every linear ordinary differential operator with con-
stant coefficients,

L =
k∑

j=0
c j

(
d

d x

) j

,

has a fundamental solution. Here the c j are constants, and we assume ck 6= 0 (so L is genuinely
k-th order).

Let v be the solution of Lv = 0 with v(0) = ·· · = v (k−2)(0) = 0 and v (k−1)(0) = c−1
k . (This solution

exists, by ODE theory.)

Now define F (x) = v(x) for x > 0 and F (x) = 0 for x < 0. Prove that LF = δ, i.e., F is a fundamental
solution.

8 Show that the characteristic function of the first quadrant in the (x, y)-plane (i.e., F (x, y) = 1 if
x, y > 0 and F (x, y) = 0 otherwise) is a fundamental solution for ∂x∂y in R2.

9 Do Exercise 4.1.8 from McOwen.

10 SupposeΩ is a bounded domain with smooth boundary, and suppose

u ∈C 2(Ω× (0,T )
)∩C 1(Ω× (0,T )

)
satisfies

ut =∆u (x ∈Ω,0 < t < T ),

with either u = 0 or ∂u/∂ν= 0 on the boundary ∂Ω, for all 0 < t < T . Define

f (t ) =
∫
Ω

u(x, t )2 d x (0 < t < T ).

Prove that f (t ) is nonincreasing.

Hint: Show that u(ut −∆u) = 1
2∂t

(
u2

)−div(u∇u)+|∇u|2, and integrate overΩ.

11 (a) Show that the general radial solution to the 3d wave equation (with c = 1) is

u(x, t ) = 1

r

[
φ(r + t )+ψ(r − t )

]
(r = |x|),

where φ,ψ :R→R are arbitrary.
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(b) Solve the Cauchy problem for the 3d wave equation with radial data:

ut t −∆u = 0, u(x,0) = f (|x|), ut (x,0) = g (|x|),

where f , g are defined on [0,∞). (Hint: Find a formula similar to the d’Alembert formula;
first extend f and g to even functions on R.)

(c) Let u, f , g be as in part (b). Show that u(0, t ) = f (t )+ t f ′(t )+ t g (t ). Thus, u is generally no
better than C k if f ∈C k+1 and g ∈C k .

12 Show that K (x) =− e−c|x|

4π |x| is a fundamental solution for ∆− c2 on R3.

13 In this exercise, A, B , C and R denote real n ×n-matrices.

We say that A = (ai j ) is positive definite (resp. negative definite) if
∑n

i , j=1 ai jξiξ j > 0 (resp. < 0) for

all ξ ∈Rn , ξ 6= 0. If this property holds with the sharp inequalities replaced by ≥ (resp. ≤), then A is
said to be positive semi-definite (resp. negative semi-definite).

(a) Show that if A is positive semi-definite, then ai i ≥ 0 for i = 1, . . . ,n. Moreover, if λ is an
eigenvalue of A, then λ≥ 0.

(b) Prove that if A and B are symmetric and positive semi-definite, then tr(AB) ≥ 0, where tr
denotes the trace. (Hint: Diagonalize A using an orthonormal basis of eigenvectors. Use part
(a) and the fact that tr(R t C R) = tr(C ) for all C if R is an orthogonal matrix.)

14 Let u :Ω→ R be C 2. Prove that if u has a local maximum at at point x0 ∈Ω, then the symmetric
n ×n-matrix D2u(x0) with entries ∂i∂ j u(x0) is negative semi-definite. (Hint: Given ξ ∈ Rn , ξ 6= 0,
define φ(t ) = u(x0 + tξ) for t in a small interval around 0.)

15 The purpose of this exercise is to prove the weak maximum principle (cf. (16) in Section 4.1 of
McOwen) for a more general elliptic operator than the Laplace operator. So let Ω be a bounded
domain in Rn , and let

L =
n∑

i , j=1
ai j (x)∂i∂ j +

n∑
i=1

bi (x)∂i ,

where a j k and b j are continuous functions onΩ and the matrix (ai j ) is symmetric (so a j k = ak j )
and positive definite, i.e.,

(1)
n∑

i , j=1
ai j (x)ξiξ j > 0 for all x ∈Ω and all ξ ∈Rn with ξ 6= 0.

(Thus, the operator L is elliptic.)

(a) Show that if v ∈C 2(Ω) satisfies Lv > 0 inΩ, then v cannot have a local maximum inΩ. (Hint:
Use the two previous problems to get a contradiction if we assume that a local maximum
exists.)

(b) Show that if x0 ∈Rn \Ω and M > 0 is sufficiently large, then w(x) = exp(−M |x −x0|2) satisfies
Lw > 0 inΩ.

(c) Suppose u ∈C 2(Ω)∩C
(
Ω

)
and that Lu = 0 inΩ. Prove that

max
Ω

u = max
∂Ω

u.

(Hint: Show that this conclusion holds for v = u +εw , where w is as above and ε> 0.)
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