

TMA4305 Partial Differential Equations Spring 2008

Norwegian University of Science and Technology Department of Mathematical Sciences

Problem Set for Week 16

- Let X, Y be normed spaces and L(X, Y) the space of bounded linear operators from X to Y.
 - a) Prove that the operator norm is a norm on L(X, Y).
 - **b)** Prove that if *Y* is a Banach space then so is L(X, Y) with operator norm.
- $\boxed{2}$ Let Ω be a bounded domain in \mathbb{R}^n .
 - **a)** Prove that $(C(\bar{\Omega}), \|\cdot\|_{\infty})$ is a Banach space.
 - **b)** Prove that $(C^1(\bar{\Omega}), \|\cdot\|_{1,\infty})$ is a Banach space when

$$||u||_{1,\infty} = ||u||_{\infty} + |||\nabla u|||_{\infty}.$$

c) Prove that $C(\bar{\Omega})$ is *not* a Hilbert space with inner product

$$(f,g) = \int_{\Omega} f(x)g(x)dx.$$

 $\boxed{3}$ Prove Youngs inequality: If $a, b > 0, 1 < p, q < \infty, \frac{1}{p} + \frac{1}{q} = 1$, then

$$ab \leq \frac{a^p}{n} + \frac{b^q}{a}$$
.

Hint: $ab = e^{\ln a + \ln b}$ use convexity of $f(x) = e^x$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad x, y \in \mathbb{R}^n, \quad \lambda \in (0, 1).$$

- 4 Exercise 6.1:5 in McOwen.
- 5 Exercise 6.1:15 in McOwen.
- 6 Read Lemma 1 and 2 with proofs in McOwen chapter 6.1d.