

TMA4305 Partial Differential Equations Spring 2008

Problem Set for Week 18

1 Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, $g \in H^1(\Omega)$, and define

$$\mathscr{A} = \left\{ u \in H^1(\Omega) : u - g \in H^1_0(\Omega) \right\}.$$

a) Show that \mathcal{A} is a weakly closed subset of $H^1(\Omega)$, i.e. show that

$$\mathscr{A} \ni u_i \to u \text{ in } H^1(\Omega) \Rightarrow u \in \mathscr{A}.$$

Hint: $H_0^1(\Omega) \ni u_j - g \rightharpoonup u - g$ in $H^1(\Omega)$.

Define $F: H^1(\Omega) \to \mathbb{R}$ by

$$F(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + f u \right) dx.$$

b) Prove that *F* is coercive on \mathcal{A} , i.e. there are constants $C_1 > 0, C_2 \ge 0$ such that

$$F(u) \ge C_1 \| u \|_{1,2}^2 - C_2 \quad \text{for all} \quad u \in \mathcal{A}.$$

Hint: Prove that in any normed space $(X, \|\cdot\|)$,

$$||x-y||^2 \ge \frac{1}{2}||x||^2 - ||y||^2$$
 and $||x||^2 \ge \frac{1}{2}||x-y||^2 - ||y||^2$ for all $x, y \in X$.

Hint 2: Triangle inequality $+ 2ab \le \frac{a^2}{\epsilon} + \epsilon b^2$ for $a, b \ge 0$.

2 Exercise 7.1:6 in McOwen.

3 Exercise 7.1:8 b in McOwen.