TMA4305 Partial Differential Equations

Spring 2008
Norwegian University of Science and Technology

Problem set for week 16
Department of Mathematical Sciences

1 See solutions from last year (2007):
http://www.math.ntnu.no/emner/TMA4305/2007v/Week11.pdf

2 a) Let $\bar{\Omega}$ be a bounded set, $\left(C(\bar{\Omega}) ;\|f\|_{\infty}=\max _{x \in \bar{\Omega}}|f(x)|\right)$ is a Banach space.

## Proof.

1) $\|\cdot\|_{\infty}$ is well-defined, indeed:

$$
f \in C(\bar{\Omega}) \Rightarrow \exists x_{0} \in \bar{\Omega} \text { such that }\|f\|_{\infty}=\left|f\left(x_{0}\right)\right|
$$

2) $\|\cdot\|_{\infty}$ is a norm on $C(\bar{\Omega})$. Trivial, for example,

$$
\|f\|_{\infty}=0 \Rightarrow|f(x)|=0 \text { for all } x \Rightarrow f=0
$$

3) Completeness:

$$
\left\{f_{i}\right\} \subset C(\bar{\Omega}) \text { Cauchy } \Rightarrow f_{i}(x) \subset \mathbb{R} \text { Cauchy },
$$

since

$$
\left|f_{i}(x)-f_{j}(x)\right| \leq\left\|f_{i}-f_{j}\right\|_{\infty} .
$$

This implies that there exists $y_{x} \in \mathbb{R}(\mathbb{R}$ is complete) such that

$$
f_{i}(x) \rightarrow y_{x} \quad \text { for all } \quad x \in \bar{\Omega}
$$

Define the function $f$ as

$$
f(x)=y_{x} \quad \text { for all } \quad x \in \bar{\Omega},
$$

and note that

$$
\left\{f_{i}\right\} \text { Cauchy } \Rightarrow\left\|f_{i}\right\|_{\infty} \leq M<\infty \forall i \Rightarrow|f(x)| \leq M \forall x \Rightarrow \sup _{\bar{\Omega}}|f(x)| \leq M \text {, }
$$

and

$$
\sup _{\bar{\Omega}}\left|f_{j}(x)-f(x)\right|=\sup _{\bar{\Omega}}\left|f_{j}(x)-\lim _{k} f_{k}(x)\right|=\lim _{k} \sup _{\bar{\Omega}}\left|f_{j}(x)-f_{k}(x)\right|=\lim _{k}\left\|f_{j}-f_{k}\right\| \rightarrow 0
$$

as $j \rightarrow 0$. Hence,
(i) $f_{j} \rightarrow f$ uniformly in $\bar{\Omega}$ implies $f \in C(\bar{\Omega})$
(ii) $\left\|f_{j}-f\right\|_{\infty} \rightarrow 0$ as $j \rightarrow 0$
and $C(\bar{\Omega})$ is complete.
b) Let $\Omega$ be a bounded set, then

$$
\left(C^{1}(\bar{\Omega}) ;\|f\|_{1, \infty}:=\sup _{x \in \Omega}\{|f(x)|+|\nabla f(x)|\}\right)
$$

is a Banach space.

## Proof.

1) $\|\cdot\|_{1, \infty}$ well defined and norm on $C^{1}(\bar{\Omega})$ as in the previous exercise.
2) 

$$
\begin{aligned}
\left\{f_{i}\right\} \text { Cauchy } & \Rightarrow\left\{f_{i}(x)\right\},\left\{\nabla f_{i}(x)\right\} \text { Cauchy } \\
& \Rightarrow \text { exists } y_{x} \in \mathbb{R}, \vec{y}_{x}^{\prime} \in \mathbb{R}^{n} \text { such that } f_{i}(x), \nabla f_{i}(x) \rightarrow y_{x}, \vec{y}_{x}^{\prime}
\end{aligned}
$$

3) Def. $f(x)=y_{x}, \vec{g}(x)=\vec{y}_{x}^{\prime}, x \in \Omega$. As in the previous exercise:

$$
\begin{gathered}
f \in C(\bar{\Omega}),\left\|f_{i}-f\right\|_{\infty} \rightarrow 0 \\
\vec{g} \in[C(\bar{\Omega})]^{n},\left\|\nabla f_{i}-\vec{g}\right\|_{\infty} \rightarrow 0
\end{gathered}
$$

4) Check: $\nabla f=\vec{g}$. For any $\epsilon>0$,

$$
\left|\frac{f\left(x+h e_{j}\right)-f(x)}{h}-g_{j}(x)\right| \leq\left|D_{e_{j}} f(x)-D_{e_{j}} f_{k}(x)\right|+\left|D_{e_{j}} f_{k}(x)-g_{j}(x)\right|<\epsilon
$$

since the first term on the right-hand side is less than $\frac{\epsilon}{2}$ for $k$ large enough and the second term is less than $\frac{\epsilon}{2}$ for $h$ small enough.
5) Conclude $f_{j} \rightarrow f$ in $C^{1}(\bar{\Omega})$ and the space is complete.
c) Let $\Omega$ be a bounded set,

$$
\left(C(\bar{\Omega}) ; \quad<f, g>=\int_{\Omega} f g\right)
$$

is an inner product spcae which is not a Hilbert space.
Proof.

1) $\langle\cdot, \cdot\rangle$ well defined on $C(\bar{\Omega})$ (if $\Omega$ nice)
2) $\langle\cdot, \cdot\rangle$ inner product on $C(\bar{\Omega})$. Trivial, e.g.

$$
<f, f>=0 \Rightarrow \int|f|^{2} d x=0 \Rightarrow f \equiv 0
$$

2) Not complete. Counter-example in $C([-1,1])$. Define

$$
f(x)=\left\{\begin{array}{ll}
0 & x<0 \\
1 & x \geq 0
\end{array} \quad \text { and } \quad f_{k}(x)= \begin{cases}0 & x<-\frac{1}{k} \\
x+\frac{1}{k} & -\frac{1}{k} \leq x<0 \\
1 & x \geq 0\end{cases}\right.
$$

and observe that

$$
\left\|f-f_{k}\right\|^{2}=\int_{-1}^{1}\left|f-f_{k}\right|^{2}=\int_{-\frac{1}{k}}^{0}\left|f-f_{k}\right|^{2} \leq \frac{1}{k} \rightarrow \infty
$$

since $\left|f-f_{k}\right|^{2} \leq 1$. Hence $\left\|f_{k}-f\right\| \rightarrow 0$ but $f \notin C(\bar{\Omega})$, so $C(\bar{\Omega})$ is not complete.

3 (Young's inequality) Let $a, b>0, p>1 q<\infty, \frac{1}{p}+\frac{1}{q}=1$. Then

$$
a \cdot b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Proof. Note that the function $f(x)=e^{x}$ is convex. Then,

$$
\begin{aligned}
a b & =e^{\ln a+\ln b}=e^{\frac{1}{p} \ln \left(a^{p}\right)+\frac{1}{q} \ln \left(b^{q}\right)} \\
& =f\left(\lambda \ln a^{p}+(1-\lambda) \ln a^{q}\right), \quad \lambda=\frac{1}{p}, \\
& \leq \lambda f\left(\ln a^{p}\right)+(1-\lambda) f\left(\ln a^{q}\right), \quad \text { by convexity, } \\
& =\frac{a^{p}}{p}+\frac{b^{q}}{q} .
\end{aligned}
$$

4 (McOwen 6.1:5) See solutions from last year (2007):
http://www.math.ntnu.no/emner/TMA4305/2007v/Week12.pdf

5 (McOwen 6.1:15)
A bounded bilinear form on a Hilbert space $X$ is a map $B: X \times X \rightarrow \mathbb{R}$ such that
(i) $B(a x+b y, z)=a B(x, z)+b B(y, z)$
(ii) $B(x, a y+b z)=a B(x, y)+b B(x, z)$
(iii) $|B(x, y)| \leq C\|x\|\|y\|$
for all $a, b \in \mathbb{R}$ and $x, y, z \in X$.
Thm 1. There exists a unique bounded linear operator $A: X \rightarrow X$ such that

$$
B(x, y)=<A x, x>, \quad<\cdot, \cdot>\text { inner product in } X,
$$

for all $x, y \in X$.
Proof.
(i) Define $F_{x}: X \rightarrow \mathbb{R}$ as

$$
F_{x}(y)=B(x, y) \quad \text { for all } \quad y \in X
$$

Note that $F_{x}$ is linear

$$
F_{x}(a y+b z)=a F_{x}(y)+b F_{x}(z) \quad \text { (by (ii)) }
$$

and bounded

$$
\left|F_{x}(y)\right|=|B(x, y)| \leq C\|x\|\| \| y \| \quad \text { (by (iii)). }
$$

(ii) Riesz representation theorem: There exists a unique $z_{x} \in X$ such that $F_{x}(y)=<z_{x}, y>$ for all $y \in X$. Moreover, $\left\|F_{x}\right\|=\left\|z_{x}\right\|$.
(iii) Define $A: X \rightarrow X$ by

$$
A x=z_{x}
$$

$A$ linear:
(*)

$$
\begin{aligned}
<A(a x+b y), z> & =<z_{a x+b y}, z>=F_{a x+b y}(z)=B(a x+b y, z) \\
& =a F_{x}(z)+b F_{y}(z) \quad \text { by }(i) \\
& =<a z_{x}+b z_{y}, z>\quad \text { by definition of } z_{x} \\
& =<a A_{x}+b A_{y}, z>\quad \text { by definition of } A
\end{aligned}
$$

Take

$$
\begin{aligned}
z=A(a x+b y)-\left[a A_{x}+b A_{y}\right] \text { in }\left(^{*}\right) & \Rightarrow\left\|A(a x+b y)-\left[a A_{x}+b A_{y}\right]\right\|=0 \\
& \Rightarrow A(a x+b y)=a A_{x}+b A_{y}
\end{aligned}
$$

$A$ bounded:

$$
\|A x\|=\left\|z_{x}\right\|=\left\|F_{x}\right\|=\sup _{y \neq 0} \frac{\left|F_{x}(y)\right|}{\|y\|}=\sup _{y \neq 0} \frac{|B(x, y)|}{\|y\|} \leq C\|x\| \quad \text { by }(i i i) .
$$

$A$ unique: Assume $\widetilde{A}$ is such that $B(x, y)=\langle\widetilde{A} x, y>$ for all $x, y \in X$. Then

$$
\begin{aligned}
& 0=<A x, y>-<\tilde{A} x, y>=<(A-\widetilde{A}) x, y> \\
& \Rightarrow 0=\|(\widetilde{A}-A) x\| \quad \text { for all } x \in X \quad \text { (take } y=(\widetilde{A}-A) x) \\
& \Rightarrow(\widetilde{A}-A) x=0 \quad \text { for all } x \in X \\
& \Rightarrow \widetilde{A}=A
\end{aligned}
$$

