Norwegian University of Science and Technology Department of Mathematical Sciences

TMA4305 Partial Differential Equations Spring 2008

Problem set for week 16

See solutions from last year (2007): http://www.math.ntnu.no/emner/TMA4305/2007v/Week11.pdf

a) Let $\overline{\Omega}$ be a bounded set, $(C(\overline{\Omega}); ||f||_{\infty} = \max_{x \in \overline{\Omega}} |f(x)|)$ is a Banach space.

Proof.

1) $\|\cdot\|_{\infty}$ is well-defined, indeed:

$$f \in C(\overline{\Omega}) \Rightarrow \exists x_0 \in \overline{\Omega} \text{ such that } ||f||_{\infty} = |f(x_0)|$$

2) $\|\cdot\|_{\infty}$ is a norm on $C(\overline{\Omega})$. Trivial, for example,

$$||f||_{\infty} = 0 \Rightarrow |f(x)| = 0$$
 for all $x \Rightarrow f = 0$

3) Completeness:

$$\{f_i\} \subset C(\overline{\Omega})$$
 Cauchy $\Rightarrow f_i(x) \subset \mathbb{R}$ Cauchy,

since

$$|f_i(x) - f_j(x)| \le ||f_i - f_j||_{\infty}$$

This implies that there exists $y_x \in \mathbb{R}$ (\mathbb{R} is complete) such that

$$f_i(x) \to y_x \quad \text{for all} \quad x \in \overline{\Omega}$$

Define the function f as

and note that

 $f(x) = y_x$ for all $x \in \overline{\Omega}$,

$$\{f_i\} \text{ Cauchy} \quad \Rightarrow \quad \|f_i\|_{\infty} \le M < \infty \ \forall \ i \quad \Rightarrow \quad |f(x)| \le M \ \forall \ x \quad \Rightarrow \quad \sup_{\overline{\Omega}} |f(x)| \le M,$$

and

$$\sup_{\overline{\Omega}} |f_j(x) - f(x)| = \sup_{\overline{\Omega}} |f_j(x) - \lim_k f_k(x)| = \limsup_k \sup_{\overline{\Omega}} |f_j(x) - f_k(x)| = \lim_k ||f_j - f_k|| \to 0$$
as $j \to 0$. Hence,

(i) $f_j \to f$ uniformly in $\overline{\Omega}$ implies $f \in C(\overline{\Omega})$ (ii) $\|f_j - f\|_{\infty} \to 0$ as $j \to 0$ and $C(\overline{\Omega})$ is complete.

b) Let Ω be a bounded set, then

$$\left(C^{1}(\overline{\Omega}) ; \|f\|_{1,\infty} := \sup_{x \in \Omega} \left\{ |f(x)| + |\nabla f(x)| \right\} \right)$$

is a Banach space.

Proof.

1) $\|\cdot\|_{1,\infty}$ well defined and norm on $C^1(\overline{\Omega})$ as in the previous exercise.

2)

 $\{f_i\} \text{ Cauchy} \Rightarrow \{f_i(x)\}, \{\nabla f_i(x)\} \text{ Cauchy}$ $\Rightarrow \text{ exists } y_x \in \mathbb{R}, \ \overrightarrow{y}'_x \in \mathbb{R}^n \text{ such that } f_i(x), \nabla f_i(x) \rightarrow y_x, \ \overrightarrow{y}'_x$

3) Def. $f(x) = y_x$, $\overrightarrow{g}(x) = \overrightarrow{y}'_x$, $x \in \Omega$. As in the previous exercise:

$$f \in C(\overline{\Omega}), \ \|f_i - f\|_{\infty} \to 0$$
$$\overrightarrow{g} \in [C(\overline{\Omega})]^n, \ \|\nabla f_i - \overrightarrow{g}\|_{\infty} \to 0$$

4) Check: $\nabla f = \overrightarrow{g}$. For any $\epsilon > 0$,

$$\frac{f(x+he_j)-f(x)}{h}-g_j(x)\bigg|\leq |D_{e_j}f(x)-D_{e_j}f_k(x)|+|D_{e_j}f_k(x)-g_j(x)|<\epsilon$$

since the first term on the right-hand side is less than $\frac{\epsilon}{2}$ for *k* large enough and the second term is less than $\frac{\epsilon}{2}$ for *h* small enough.

- 5) Conclude $f_j \to f$ in $C^1(\overline{\Omega})$ and the space is complete.
- c) Let Ω be a bounded set,

$$\left(C(\overline{\Omega}); < f, g > = \int_{\Omega} fg\right)$$

is an inner product spcae which is not a Hilbert space.

Proof.

1) $\langle \cdot, \cdot \rangle$ well defined on $C(\overline{\Omega})$ (if Ω nice)

2) $\langle \cdot, \cdot \rangle$ inner product on $C(\overline{\Omega})$. Trivial, e.g.

$$\langle f, f \rangle = 0 \Rightarrow \int |f|^2 dx = 0 \Rightarrow f \equiv 0$$

2) Not complete. Counter-example in C([-1,1]). Define

$$f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases} \text{ and } f_k(x) = \begin{cases} 0 & x < -\frac{1}{k} \\ x + \frac{1}{k} & -\frac{1}{k} \le x < 0 \\ 1 & x \ge 0, \end{cases}$$

and observe that

$$||f - f_k||^2 = \int_{-1}^1 |f - f_k|^2 = \int_{-\frac{1}{k}}^0 |f - f_k|^2 \le \frac{1}{k} \to \infty$$

since
$$|f - f_k|^2 \le 1$$
. Hence $||f_k - f|| \to 0$ but $f \notin C(\overline{\Omega})$, so $C(\overline{\Omega})$ is not complete.

3 (Young's inequality) Let a, b > 0, p > 1 $q < \infty, \frac{1}{p} + \frac{1}{q} = 1$. Then

$$a \cdot b \le \frac{a^p}{p} + \frac{b^q}{q}$$

Proof. Note that the function $f(x) = e^x$ is convex. Then,

$$ab = e^{\ln a + \ln b} = e^{\frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q)}$$

= $f(\lambda \ln a^p + (1 - \lambda) \ln a^q), \quad \lambda = \frac{1}{p},$
 $\leq \lambda f(\ln a^p) + (1 - \lambda) f(\ln a^q), \quad \text{by convexity,}$
 $= \frac{a^p}{p} + \frac{b^q}{q}.$

4 (McOwen 6.1:5) See solutions from last year (2007): http://www.math.ntnu.no/emner/TMA4305/2007v/Week12.pdf

5 (McOwen 6.1:15)

A bounded bilinear form on a Hilbert space *X* is a map $B: X \times X \rightarrow \mathbb{R}$ such that

- (i) B(ax + by, z) = aB(x, z) + bB(y, z)
- (ii) B(x, ay + bz) = aB(x, y) + bB(x, z)
- (iii) $|B(x, y)| \le C ||x|| ||y||$

for all $a, b \in \mathbb{R}$ and $x, y, z \in X$.

Thm 1. There exists a unique bounded linear operator $A: X \to X$ such that

 $B(x, y) = \langle Ax, x \rangle, \quad \langle \cdot, \cdot \rangle \text{ inner product in } X,$

for all $x, y \in X$.

Proof.

(i) Define $F_x : X \to \mathbb{R}$ as

	$F_x(y) = B(x, y)$ for all $y \in X$.	
Note that F_x is linear		
	$F_x(ay+bz) = aF_x(y) + bF_x(z)$	(by (ii))
and bounded		
	$ F_x(y) = B(x, y) \le C x y $	(by (iii)).
Riesz representation theorem: There exists a unique $z_x \in X$ such that $F_x(y)$		

(ii) Riesz representation theorem: There exists a unique $z_x \in X$ such that $F_x(y) = \langle z_x, y \rangle$ for all $y \in X$. Moreover, $||F_x|| = ||z_x||$.

(iii) Define
$$A: X \to X$$
 by

 $Ax = z_x$.

A linear:

$$< A(ax + by), z > = < z_{ax+by}, z > = F_{ax+by}(z) = B(ax + by, z)$$

$$= aF_x(z) + bF_y(z) \quad \text{by } (i)$$

$$= < az_x + bz_y, z > \quad \text{by definition of } z_x$$

$$= < aA_x + bA_y, z > \quad \text{by definition of } A$$

(*)

Take

$$z = A(ax + by) - [aA_x + bA_y] \text{ in } (*) \implies ||A(ax + by) - [aA_x + bA_y]|| = 0$$
$$\Rightarrow A(ax + by) = aA_x + bA_y$$

A bounded:

$$\|Ax\| = \|z_x\| = \|F_x\| = \sup_{y \neq 0} \frac{|F_x(y)|}{\|y\|} = \sup_{y \neq 0} \frac{|B(x, y)|}{\|y\|} \le C \|x\| \quad \text{by } (iii).$$

A unique: Assume \widetilde{A} is such that $B(x, y) = \langle \widetilde{A}x, y \rangle$ for all $x, y \in X$. Then

$$\begin{split} 0 &= \langle Ax, y \rangle - \langle \widetilde{A}x, y \rangle = \langle (A - \widetilde{A})x, y \rangle \\ \Rightarrow 0 &= \|(\widetilde{A} - A)x\| \quad \text{for all } x \in X \quad (\text{take } y = (\widetilde{A} - A)x) \\ \Rightarrow (\widetilde{A} - A)x &= 0 \quad \text{for all } x \in X \\ \Rightarrow \widetilde{A} &= A \end{split}$$