TMA4305 Partial Differential Equations Spring 2008
Norwegian University of Science and Technology

Solutions Week 17
Department of Mathematical Sciences

1 Take $R>0$ such that $\Omega \subset B_{0}(R)\left(\Omega\right.$ is bounded) and let $\phi \in C_{0}^{\infty}(\Omega)$ be arbitrary. Note that $D^{\alpha} \phi=0$ on $\partial \Omega$ for every α. Two integrations by part w.r.t. x_{i} then give

$$
\begin{aligned}
\|\phi\|_{2}^{2} & =\int \phi^{2} \cdot 1=-\int \partial_{x_{i}}\left(\phi^{2}\right) \cdot x_{i}=-\int 2 \phi \phi_{x_{i}} \cdot x_{i} \\
& =\int \partial_{x_{i}}\left(2 \phi \phi_{x_{i}}\right) \cdot \frac{1}{2} x_{i}^{2}=\int\left(2 \phi_{i}^{2}+2 \phi \phi_{x_{i} x_{i}}\right) \cdot \frac{1}{2} x_{i}^{2}
\end{aligned}
$$

Now we sum over i and use that $\left|x_{i}\right| \leq|x| \leq R$,

$$
n\|\phi\|_{2}^{2}=\int\left(2|\nabla \phi|^{2}+2 \phi \Delta \phi\right) \cdot \frac{1}{2} x_{i}^{2} \leq R^{2} \int\left(|\nabla \phi|^{2}+|\phi \Delta \phi|\right) .
$$

Another integration by parts show that

$$
\begin{equation*}
\int|\nabla \phi|^{2}=\sum \int \phi_{x_{i}}^{2}=-\sum \int \phi \phi_{x_{i} x_{i}}, \tag{1}
\end{equation*}
$$

and the two last inequalities in combination with Cauchy-Schwartz inequality give

$$
n\|\phi\|_{2}^{2} \leq R^{2} 2\|\phi\|_{2}\|\Delta \phi\|_{2}
$$

or

$$
\begin{equation*}
\|\phi\|_{2} \leq K\|\Delta \phi\|_{2}, \quad \text { where } \quad K=\frac{2 \operatorname{diam}(\Omega)}{n} \tag{2}
\end{equation*}
$$

The same inequality holds for any element $\left.u \in H_{0}^{(} \Omega\right)$ by density. By definition of $H_{0}^{2}(\Omega)$ there is a sequence $\left\{\phi_{i}\right\}_{i} \subset C_{0}^{\infty}(\Omega)$ such that

$$
\lim \left\|u-\phi_{i}\right\|_{2,2}=0,
$$

then by the triangle inequality and inequality (2),

$$
\|u\|_{2} \leq\left\|\phi_{i}\right\|_{2}+\left\|u-\phi_{i}\right\|_{2} \leq K\left\|\Delta \phi_{i}\right\|_{2}+\left\|u-\phi_{i}\right\|_{2} \leq K\|\Delta u\|_{2}+K\left\|\Delta \phi_{i}-\Delta u\right\|_{2}+\left\|u-\phi_{i}\right\|_{2} .
$$

Since this result holds for all i we can send $i \rightarrow \infty$ to get

$$
\|u\|_{2} \leq K\|\Delta u\|_{2} .
$$

OBS: This exercise turned out to be harder that I first thought! It will not be given in this form in the future.
The idea is to prove that $\left(H_{0}^{2}(\Omega),(\cdot, \cdot)\right)$ is a Hilbert space when

$$
(u, v)=\int_{\Omega} \Delta u \Delta v
$$

and that

$$
F(\nu)=\int_{\Omega} f v
$$

is a bounded linear functional on $\left(H_{0}^{2}(\Omega),(\cdot, \cdot)\right)$ when $f \in L^{2}(\Omega)$.
We can then use Riesz representation theorem to conclude that there is a unique $u \in H_{2}^{2}(\Omega)$ such that

$$
(u, v)=F(v) \quad \text { for all } \quad v \in H_{0}^{2}(\Omega)
$$

and hence there is a unique weak solution of (1).

1) (.,.) is an inner product on $H_{0}^{2}(\Omega)$: Let $u, v, w \in H_{0}^{2}(\Omega), a, b \in \mathbb{R}$, then
i) $(u, u) \geq 0$
ii) $0=(u, u)=\|\Delta u\|_{2}^{2} \underset{\text { exercise } 1}{\Longrightarrow}\|u\|_{2}=0 \quad \Longrightarrow u=0$ a.e. in $\Omega \quad \Longrightarrow \quad u=0$ in $H_{0}^{2}(\Omega)$.
iii) $(a u+b v, w)=a(u, w)+b(v, w)$
iv) $(u, v)=(v, u)$
2) The induced norm $|u|^{2}=(u, u)$ is equivalent to the H^{2} norm $\|\cdot\|_{2,2}$, and hence $\left(H_{0}^{2}(\Omega),|\cdot|_{2,2}\right)$ is complete since $\left(H_{0}^{2}(\Omega),\|\cdot\|_{2,2}\right)$ is complete:
It is obvious that

$$
|u|_{2,2} \leq\|u\|_{2,2} \quad \text { for } \quad u \in H_{0}^{2}(\Omega) .
$$

To prove the opposite inequality, we need the Poincare type inequality from Exercise 1:

$$
\|u\|_{2} \leq K\|\Delta u\|_{2} \quad \text { for } \quad u \in H_{0}^{2}(\Omega),
$$

the (interpolation) inequality that follows from identity (1) in Exercise 1:

$$
\|\nabla u\|_{2} \leq\|u\|_{2}\|\Delta u\|_{2} \quad \text { for } \quad u \in H_{0}^{2}(\Omega)
$$

and finally we need an inquality which is not elemtary: There is a constant $C>0$ such that

$$
\left\|D^{2} u\right\|_{2} \leq C\|\Delta u\|_{2} \quad \text { for } \quad u \in H_{0}^{2}(\Omega) .
$$

We will not prove this inequality - its proof can be found in Stein: "Singular integrals and ..." and requires the theory of singular integral. This proof is not a part of this course. By these inequalities it follows that

$$
\|u\|_{2,2}^{2}=\|u\|_{2}^{2}+\|\nabla u\|_{2}^{2}+\left\|D^{2} u\right\|_{2}^{2} \leq\left(K^{2}+K+C^{2}\right)\|\Delta u\|_{2}^{2}=\left(K^{2}+K+C^{2}\right)|u|_{2,2}^{2},
$$

and hence the norms are equivalent.
3) F is a bounded linear functional: This is obvious e.g.

$$
|F(v)| \leq\|f\|_{2}\|v\|_{2} \leq K\|f\|_{2}|v|_{2,2} .
$$

Solutions to the rest of the exercises can be found in Solutions Problems given for Week 12, 2007:
http://www.math.ntnu.no/emner/TMA4305/2007v/Week12.pdf

