

TMA4305 Partial Differential Equations Spring 2009

Problem Set for Week 14

- Let *X*, *Y* be normed spaces and *L*(*X*, *Y*) the space of bounded linear operators from *X* to *Y*.
 a) Prove that the operator norm is a norm on *L*(*X*, *Y*).
 - **b)** Prove that if *Y* is a Banach space then so is L(X, Y) with operator norm.
- 2 Let Ω be a bounded domain in \mathbb{R}^n .
 - **a)** Prove that $(C(\overline{\Omega}), \|\cdot\|_{\infty})$ is a Banach space.
 - **b)** Prove that $(C^1(\overline{\Omega}), \|\cdot\|_{1,\infty})$ is a Banach space when

$$||u||_{1,\infty} = ||u||_{\infty} + ||\nabla u||_{\infty}.$$

c) Prove that $C(\overline{\Omega})$ is *not* a Hilbert space with inner product

$$(f,g) = \int_{\Omega} f(x)g(x)dx.$$

3 Prove Youngs inequality: If $a, b > 0, 1 < p, q < \infty, \frac{1}{p} + \frac{1}{q} = 1$, then

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$

Hint: $ab = e^{\ln a + \ln b}$ use convexity of $f(x) = e^x$:

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \quad x,y \in \mathbb{R}^n, \quad \lambda \in (0,1).$$

4 Exercise 6.1:5 in McOwen.

5 Exercise 6.1:15 in McOwen.

6 Read Lemma 1 and 2 with proofs in McOwen chapter 6.1d.