Norwegian University of Science and Technology Department of Mathematical Sciences

TMA4305 Partial Differential Equations Spring 2009

Problem Set for Week 16

1 (Corrected version)
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain, $\|\cdot\|_{2,2}$ denote the norm in $H^{2}(\Omega)$, and $H_{0}^{2}(\Omega)=\left\{u \in H^{2}(\Omega)\right.$: there is a sequence $\left\{\phi_{i}\right\} \subset C_{0}^{\infty}(\Omega)$ such that $\left.\lim \left\|\phi_{i}-u\right\|_{2,2}=0\right\}$.
$H_{0}^{2}(\Omega)$ is a closed subspace of $H^{2}(\Omega)$ and hence Hilbert space with the H^{2}-inner product.
a) Prove the Poincare inequality for $H_{0}^{2}(\Omega)$:

$$
\|u\|_{2}^{2}+\|\nabla u\|_{2}^{2} \leq C\|\Delta u\|_{2}^{2} \quad \forall v \in H_{0}^{2}(\Omega) .
$$

Hint: You will need the inequality (which you may take for granted!)

$$
\left\|D^{2} u\right\|_{2} \leq C\|\Delta u\|_{2} \quad \forall u \in H_{0}^{2}(\Omega) .
$$

Here $\left\|D^{2} u\right\|_{2}^{2}=\sum_{|\alpha|=2}\left\|D^{\alpha} u\right\|_{2}^{2}$. The last inequality is not elementary. A proof can be found in Stein: Singular integrals and Differentiability Properties of Functions.

A function $u \in H_{0}^{2}(\Omega)$ is a weak solution of the following boundary value problem for the biharmonic equation
(1)

$$
\begin{cases}\Delta^{2} u=f & \text { in } \Omega \\ u=\frac{\partial u}{\partial v}=0 & \text { in } \quad \partial \Omega\end{cases}
$$

if

$$
\int_{\Omega} \Delta u \Delta v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{2}(\Omega) .
$$

b) (Evans 6.6:2) If $f \in L^{2}(\Omega)$, prove that exists a unique weak solution of (1). Hints: Riesz representation theorem and the Poincare inequality from (a).

2 Exercise 6.2:4 in McOwen.

3 Exercise 6.3:3 in McOwen.

4 Exercise 6.3:7 in McOwen.

