Norwegian University of Science and Technology Department of Mathematical Sciences

TMA4305 Partial Differential Equations Spring 2009

Problem Set for Week 17

1 Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain, $g \in H^{1}(\Omega)$, and define

$$
\mathscr{A}=\left\{u \in H^{1}(\Omega): u-g \in H_{0}^{1}(\Omega)\right\} .
$$

a) Show that \mathscr{A} is a weakly closed subset of $H^{1}(\Omega)$, i.e. show that

$$
\mathscr{A} \ni u_{j} \rightharpoonup u \quad \text { in } H^{1}(\Omega) \quad \Rightarrow \quad u \in \mathscr{A}
$$

Hint: $H_{0}^{1}(\Omega) \ni u_{j}-g \rightarrow u-g$ in $H^{1}(\Omega)$.
Define $F: H^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
F(u)=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}+f u\right) d x
$$

b) Prove that F is coercive on \mathscr{A}, i.e. there are constants $C_{1}>0, C_{2} \geq 0$ such that

$$
F(u) \geq C_{1}\|u\|_{1,2}^{2}-C_{2} \quad \text { for all } \quad u \in \mathscr{A} .
$$

Hint: Prove that in any normed space $(X,\|\cdot\|)$,

$$
\|x-y\|^{2} \geq \frac{1}{2}\|x\|^{2}-\|y\|^{2} \quad \text { and } \quad\|x\|^{2} \geq \frac{1}{2}\|x-y\|^{2}-\|y\|^{2} \quad \text { for all } \quad x, y \in X
$$

Hint 2: Triangle inequality $+2 a b \leq \frac{a^{2}}{\epsilon}+\epsilon b^{2}$ for $a, b \geq 0$.

2 Exercise 7.1:6 in McOwen.

3 Exercise 7.1:8 b in McOwen.

