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Extra Problem Set

This problem set is based on a problem set given for TMA4305 in 2007 by Sigmund Selberg.

Solve using the method of characteristics:

(@) xuyx+yuy=2u, u(x,1) = gx).

(b)

uuy+uy =1, u(x, x) = x/2.

Consider Burgers’ equation

us+uu,=0 in Rx(0,00)

with initial condition

a)

b)
(@

(b)
(©
(d

ifx<-1,

if-1<x<0,
u(x,0) = .
if0<x<1,

if x> 1.

(=R e R

Find the solution u also satisfying the entropy condition

u; > u, across any shock.

(This condition ensures uniqueness, and it can be justified on physical grounds.

Cf. Section 1.2.b in McOwen, and the Remark at the end of that section.)

Draw a picture of the shocks and characteristics in the (x, £)-plane.

Show that the following equation is hyperbolic:
Uxx +6Uyxy — 16Uy, =0.

Transform the equation to canonical coordinates.
Find the general solution u(x, y).

Find a solution that satisfies u(—x,2x) = x and u(x,0) = sin2x.

(McOwen 2.3:16) Consider an m-th order differential operator and its principal symbol:

Lu= Z ag(x)0%u and or(x;6) = Z ag(x)E” (x,¢ eR™).

lal=m lal=m

Prove that L is elliptic at x, i.e.

or(x;E) #0 forallé e R", & £0,

only when m is an even integer. (Hint: Consider fi;_; 01(x;§)dSe)
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The purpose of this exercise is to prove that every linear ordinary differential operator with con-
stant coefficients has a fundamental solution. Let

k d\J
L:];Ocj (%) ) cj=const, ¢ #0.
(L is genuinely k-th order). Let v be the solution of
Lv=0, t>0; v(©)=-=v*2©0) =0 v*V0O)=c".
(This solution exists by ODE theory.) Prove that

{v(x) x>0
F(x) =
0 x<0

is a fundamental solution of L, i.e. LF =§.

@ a) Show that
1 x>0,y>0

l (x, ) = 1 x>0 0 (x, V) =
y x> Rl ' {O OtherWise
iS a fundamental SOlutiOIl f0r 6)56)/ in [R .

b) Show that

e—clx\

471 | x|

K(x)=-

is a fundamental solution for A — ¢? in R3.

Solve the problem

U — AUy = ¥ +sint, u(x,0) =0, ur(x,0) = —,
1+x

forxeR, teR.

(a) Show that the general radial solution to the 3d wave equation (with ¢ =1) is

1
u(x, t)=;[¢(r+t)+1//(r—t)] (r=lx),

where ¢, ¥ : R — R are arbitrary.
(b) Solve the Cauchy problem for the 3d wave equation with radial data:

ure—Au=0,  ux0=7fdxD),  w:(x0=glxD,
where f, g are defined on [0, c0).
(Hint: Extend f, g to even functions on R and find a formula similar to d’Alembert formula)

(c) Letu, f,g be asin part (b). Show that u(0, 1) = f(£) + ¢ f'(£) + tg(r).
Thus, u is generally no better than C¥ if f € C¥*! and g € C*.

@ (McOwen 3.2:6) Let u solve
ur—c?Au=0 in R"x (0,00)
{uzg, u;=h on R"x{0},
where g, h € C0°°([R”).
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a) For n =3, show that

@)

lulx, 0| < — in R® x (0,00).

b) Is a similar result true for n = 2?

Suppose Q is a bounded domain with smooth boundary, and suppose

satisfies

ueC*(Qx(0,M)nCHQx(©,1)

ur=Au in Qx(0,7),
u=0 or %=0 in 9Qx(0,7),

Prove that

f(t)=f ux,n’dx (©O<t<T),
Q

is nonincreasing.

Hint: Show that u(u; — Au) = %a,(uz) —div(uVu) + |Vul?, and integrate over Q.

a) (McOwen 4.1:8) Hopf Lemma.
Assume:

(i) Qisabounded domain in R” satistying an interior ball condition:

for every x € 0Q) there exists a ball B={y:|y — yy| < r} such that Bc Q and 6Qn B ={x}

(i) ue C?(Q) N CH(Q) satisfy

Au=0 in Q.

(iii) There is an xy € 0Q such that u(xp) = maxg u.

Prove that either

ou _
a—(xo) >0 or u =constant in Q,
v

where v denote the unit exterior normal of 0Q and g—z (x) =v(x)-Vu(x) for x € 0Q2.

b) Use part a) to prove the strong maximum principle:

If (i) and (ii) hold, then either u(x) <maxu forall.xeQ or
Q

c) (Uniqueness results for the Robin and Neumann problem)
Let u, v € C2(Q) n C1(Q) be two solutions of

Au= f(x) in Q
g—ﬁ+a(x)u=h(x) on 09,

where a =0, f,a, h are continuous, and Q satisfy (i).

Use part a) and b) to prove that

(1) @ #0 (Robincase)>u=v in Q.
(2) a=0 (Neumann case) = u— v =constant in Q.

Let A, B, C, and R be real n x n-matrices.
We say that A = (a;;) is positive definite (resp. positive semi-definite if

n
Y aijéiéj>0 (resp.=0) forallé eR",&#0.
ij=1

(And A is negative (semi) definiteif —A is positive (semi) definite).

u =constant in Q.
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(a) Show thatif A is positive semi-definite, then a;; =0fori=1,...,n.
Moreover, if A is an eigenvalue of A, then A = 0.

(b) Prove that if A and B are symmetric and positive semi-definite, then tr(AB) = 0, where tr
denotes the trace. (Hint: Diagonalize A using an orthonormal basis of eigenvectors. Use part
(a) and the fact that tr(R'CR) = tr(C) for all C if R is an orthogonal matrix.)

Let u: Q — R be C2. Prove that if « has a local maximum at at point xo € Q, then the symmetric
n x n-matrix D?u(xp) with entries 8,0 ju(xp) is negative semi-definite.

(Hint: Given ¢ e R, £ #0, define ¢ () = u(xp + t&) for t in a small interval around 0.)

The purpose of this exercise is to prove the weak maximum principle (cf. (16) in Section 4.1 of
McOwen) for a more general elliptic operator than the Laplace operator.

Let Q be a bounded domain in R", and let

n
L= ) a;j(x)0;0;j+Y_ b;i(x)0;,

i=1

n
i,j=1 i=

where a; and b; are continuous functions on Q and the matrix (a; j) is symmetric (so ajx = ag;)
and positive definite, i.e.,

n
1) Y aij(x)éé;>0  forall xe Qandallé € R" with & #0.
ij=1

(The operator L is elliptic and (1) is called the ellipticity condition.)
(a) Show thatif v € C2(Q) satisfies Lv > 0in Q, then v cannot have a local maximum in Q. (Hint:

Use the two previous problems to get a contradiction if we assume that a local maximum
exists.)

(b) Show that if xo € R" \Qand M >0is sufficiently large, then w(x) = exp(—M |x — xo |2) satisfies
Lw>0in Q.

(c) Suppose u € C?(Q) N C(Q) and that Lu = 0 in Q. Prove that

maxu =maxu.
a o0

(Hint: Show that this conclusion holds for v = u + ew, where w is as above and € > 0.)
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