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This problem set is based on a problem set given for TMA4305 in 2007 by Sigmund Selberg.

1 Solve using the method of characteristics:

(a) xux + yuy = 2u, u(x,1) = g (x).

(b) uux +uy = 1, u(x, x) = x/2.

2 Consider Burgers’ equation
ut +uux = 0 in R× (0,∞)

with initial condition

u(x,0) =


1 if x <−1,

0 if −1 < x < 0,

2 if 0 < x < 1,

0 if x > 1.

a) Find the solution u also satisfying the entropy condition

ul > ur across any shock.

(This condition ensures uniqueness, and it can be justified on physical grounds.
Cf. Section 1.2.b in McOwen, and the Remark at the end of that section.)

b) Draw a picture of the shocks and characteristics in the (x, t )-plane.

3 (a) Show that the following equation is hyperbolic:

uxx +6ux y −16uy y = 0.

(b) Transform the equation to canonical coordinates.

(c) Find the general solution u(x, y).

(d) Find a solution that satisfies u(−x,2x) = x and u(x,0) = sin2x.

4 (McOwen 2.3:16) Consider an m-th order differential operator and its principal symbol:

Lu = ∑
|α|≤m

aα(x)∂αu and σL(x;ξ) = ∑
|α|=m

aα(x)ξα (x,ξ ∈Rn).

Prove that L is elliptic at x, i.e.

σL(x;ξ) 6= 0 for all ξ ∈Rn , ξ 6= 0,

only when m is an even integer. (Hint: Consider
∫
|ξ|=1σL(x;ξ)dSξ)
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5 The purpose of this exercise is to prove that every linear ordinary differential operator with con-
stant coefficients has a fundamental solution. Let

L =
k∑

j=0
c j

(
d

d x

) j

, c j =const, ck 6= 0.

(L is genuinely k-th order). Let v be the solution of

Lv = 0, t > 0; v(0) = ·· · = v (k−2)(0) = 0, v (k−1)(0) = c−1
k .

(This solution exists by ODE theory.) Prove that

F (x) =
{

v(x) x > 0

0 x < 0

is a fundamental solution of L, i.e. LF = δ.

6 a) Show that

F (x, y) = 1{x>0,y>0}(x, y) =
{

1 x > 0, y > 0

0 otherwise

is a fundamental solution for ∂x∂y in R2.

b) Show that

K (x) =− e−c|x|

4π |x|
is a fundamental solution for ∆− c2 in R3.

7 Solve the problem

ut t −4uxx = ex + sin t , u(x,0) = 0, ut (x,0) = 1

1+x2 ,

for x ∈R, t ∈R.

8 (a) Show that the general radial solution to the 3d wave equation (with c = 1) is

u(x, t ) = 1

r

[
φ(r + t )+ψ(r − t )

]
(r = |x|),

where φ,ψ :R→R are arbitrary.

(b) Solve the Cauchy problem for the 3d wave equation with radial data:

ut t −∆u = 0, u(x,0) = f (|x|), ut (x,0) = g (|x|),

where f , g are defined on [0,∞).

(Hint: Extend f , g to even functions on R and find a formula similar to d’Alembert formula)

(c) Let u, f , g be as in part (b). Show that u(0, t ) = f (t )+ t f ′(t )+ t g (t ).

Thus, u is generally no better than C k if f ∈C k+1 and g ∈C k .

9 (McOwen 3.2:6) Let u solve {
ut t − c2∆u = 0 in Rn × (0,∞)

u = g , ut = h on Rn × {0},

where g ,h ∈C∞
0 (Rn).
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a) For n = 3, show that

|u(x, t )| ≤ C

t
in R3 × (0,∞).

b) Is a similar result true for n = 2?

10 SupposeΩ is a bounded domain with smooth boundary, and suppose

u ∈C 2(Ω× (0,T )
)∩C 1(Ω× (0,T )

)
satisfies {

ut =∆u in Ω× (0,T ),

u = 0 or ∂u
∂ν = 0 in ∂Ω× (0,T ),

Prove that

f (t ) =
∫
Ω

u(x, t )2 d x (0 < t < T ),

is nonincreasing.

Hint: Show that u(ut −∆u) = 1
2∂t

(
u2

)−div(u∇u)+|∇u|2, and integrate overΩ.

11 a) (McOwen 4.1:8) Hopf Lemma.

Assume:

(i) Ω is a bounded domain in Rn satisfying an interior ball condition:

for every x ∈ ∂Ω there exists a ball B = {y : |y − y0| < r } such that B ⊂Ω and ∂Ω∩ B̄ = {x}

(ii) u ∈C 2(Ω)∩C 1(Ω̄) satisfy
∆u ≥ 0 in Ω.

(iii) There is an x0 ∈ ∂Ω such that u(x0) = maxΩ̄u.

Prove that either
∂u

∂ν
(x0) > 0 or u ≡ constant in Ω̄,

where ν denote the unit exterior normal of ∂Ω and ∂u
∂ν (x) = ν(x) ·∇u(x) for x ∈ ∂Ω.

b) Use part a) to prove the strong maximum principle:

If (i) and (ii) hold, then either u(x) < max
Ω̄

u for all x ∈Ω or u ≡constant in Ω̄.

c) (Uniqueness results for the Robin and Neumann problem)

Let u, v ∈C 2(Ω)∩C 1(Ω̄) be two solutions of{
∆u = f (x) in Ω
∂u
∂ν +α(x)u = h(x) on ∂Ω,

where α≥ 0, f ,α,h are continuous, andΩ satisfy (i).

Use part a) and b) to prove that

(1) α 6≡ 0 (Robin case) ⇒ u ≡ v in Ω̄.

(2) α≡ 0 (Neumann case) ⇒ u − v ≡ constant in Ω̄.

12 Let A, B , C , and R be real n ×n-matrices.

We say that A = (ai j ) is positive definite (resp. positive semi-definite if

n∑
i , j=1

ai jξiξ j > 0 (resp. ≥ 0) for all ξ ∈Rn , ξ 6= 0.

(And A is negative (semi) definite if −A is positive (semi) definite).
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(a) Show that if A is positive semi-definite, then ai i ≥ 0 for i = 1, . . . ,n.
Moreover, if λ is an eigenvalue of A, then λ≥ 0.

(b) Prove that if A and B are symmetric and positive semi-definite, then tr(AB) ≥ 0, where tr
denotes the trace. (Hint: Diagonalize A using an orthonormal basis of eigenvectors. Use part
(a) and the fact that tr(R t C R) = tr(C ) for all C if R is an orthogonal matrix.)

13 Let u :Ω→ R be C 2. Prove that if u has a local maximum at at point x0 ∈Ω, then the symmetric
n ×n-matrix D2u(x0) with entries ∂i∂ j u(x0) is negative semi-definite.

(Hint: Given ξ ∈Rn , ξ 6= 0, define φ(t ) = u(x0 + tξ) for t in a small interval around 0.)

14 The purpose of this exercise is to prove the weak maximum principle (cf. (16) in Section 4.1 of
McOwen) for a more general elliptic operator than the Laplace operator.

LetΩ be a bounded domain in Rn , and let

L =
n∑

i , j=1
ai j (x)∂i∂ j +

n∑
i=1

bi (x)∂i ,

where a j k and b j are continuous functions onΩ and the matrix (ai j ) is symmetric (so a j k = ak j )
and positive definite, i.e.,

(1)
n∑

i , j=1
ai j (x)ξiξ j > 0 for all x ∈Ω and all ξ ∈Rn with ξ 6= 0.

(The operator L is elliptic and (1) is called the ellipticity condition.)

(a) Show that if v ∈C 2(Ω) satisfies Lv > 0 inΩ, then v cannot have a local maximum inΩ. (Hint:
Use the two previous problems to get a contradiction if we assume that a local maximum
exists.)

(b) Show that if x0 ∈Rn \Ω and M > 0 is sufficiently large, then w(x) = exp(−M |x −x0|2) satisfies
Lw > 0 inΩ.

(c) Suppose u ∈C 2(Ω)∩C
(
Ω

)
and that Lu = 0 inΩ. Prove that

max
Ω

u = max
∂Ω

u.

(Hint: Show that this conclusion holds for v = u +εw , where w is as above and ε> 0.)
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