TMA4305 Partial Differential Equations Spring 2009
Norwegian University of Science and Technology

Extra Problem Set
Department of Mathematical Sciences

This problem set is based on a problem set given for TMA4305 in 2007 by Sigmund Selberg.

1 Solve using the method of characteristics:
(a) $x u_{x}+y u_{y}=2 u, u(x, 1)=g(x)$.
(b) $u u_{x}+u_{y}=1, u(x, x)=x / 2$.

2 Consider Burgers' equation

$$
u_{t}+u u_{x}=0 \quad \text { in } \quad \mathbb{R} \times(0, \infty)
$$

with initial condition

$$
u(x, 0)= \begin{cases}1 & \text { if } x<-1 \\ 0 & \text { if }-1<x<0 \\ 2 & \text { if } 0<x<1 \\ 0 & \text { if } x>1\end{cases}
$$

a) Find the solution u also satisfying the entropy condition

$$
u_{l}>u_{r} \quad \text { across any shock. }
$$

(This condition ensures uniqueness, and it can be justified on physical grounds. Cf. Section 1.2.b in McOwen, and the Remark at the end of that section.)
b) Draw a picture of the shocks and characteristics in the (x, t)-plane.

3 (a) Show that the following equation is hyperbolic:

$$
u_{x x}+6 u_{x y}-16 u_{y y}=0 .
$$

(b) Transform the equation to canonical coordinates.
(c) Find the general solution $u(x, y)$.
(d) Find a solution that satisfies $u(-x, 2 x)=x$ and $u(x, 0)=\sin 2 x$.

4 (McOwen 2.3:16) Consider an m-th order differential operator and its principal symbol:

$$
L u=\sum_{|\alpha| \leq m} a_{\alpha}(x) \partial^{\alpha} u \quad \text { and } \quad \sigma_{L}(x ; \xi)=\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha} \quad\left(x, \xi \in \mathbb{R}^{n}\right) .
$$

Prove that L is elliptic at x, i.e.

$$
\sigma_{L}(x ; \xi) \neq 0 \quad \text { for all } \xi \in \mathbb{R}^{n}, \xi \neq 0
$$

only when m is an even integer. (Hint: Consider $\int_{|\xi|=1} \sigma_{L}(x ; \xi) d S_{\xi}$)

5 The purpose of this exercise is to prove that every linear ordinary differential operator with constant coefficients has a fundamental solution. Let

$$
L=\sum_{j=0}^{k} c_{j}\left(\frac{d}{d x}\right)^{j}, \quad c_{j}=\text { const }, \quad c_{k} \neq 0
$$

(L is genuinely k-th order). Let v be the solution of

$$
L v=0, \quad t>0 ; \quad v(0)=\cdots=v^{(k-2)}(0)=0, v^{(k-1)}(0)=c_{k}^{-1} .
$$

(This solution exists by ODE theory.) Prove that

$$
F(x)= \begin{cases}v(x) & x>0 \\ 0 & x<0\end{cases}
$$

is a fundamental solution of L, i.e. $L F=\delta$.

6 a) Show that

$$
F(x, y)=1_{\{x>0, y>0\}}(x, y)= \begin{cases}1 & x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

is a fundamental solution for $\partial_{x} \partial_{y}$ in \mathbb{R}^{2}.
b) Show that

$$
K(x)=-\frac{e^{-c|x|}}{4 \pi|x|}
$$

is a fundamental solution for $\Delta-c^{2}$ in \mathbb{R}^{3}.

Solve the problem

$$
u_{t t}-4 u_{x x}=e^{x}+\sin t, \quad u(x, 0)=0, \quad u_{t}(x, 0)=\frac{1}{1+x^{2}}
$$

for $x \in \mathbb{R}, t \in \mathbb{R}$.

8 (a) Show that the general radial solution to the 3d wave equation (with $c=1$) is

$$
u(x, t)=\frac{1}{r}[\phi(r+t)+\psi(r-t)] \quad(r=|x|)
$$

where $\phi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ are arbitrary.
(b) Solve the Cauchy problem for the 3d wave equation with radial data:

$$
u_{t t}-\Delta u=0, \quad u(x, 0)=f(|x|), \quad u_{t}(x, 0)=g(|x|),
$$

where f, g are defined on $[0, \infty)$.
(Hint: Extend f, g to even functions on \mathbb{R} and find a formula similar to d'Alembert formula)
(c) Let u, f, g be as in part (b). Show that $u(0, t)=f(t)+t f^{\prime}(t)+t g(t)$.

Thus, u is generally no better than C^{k} if $f \in C^{k+1}$ and $g \in C^{k}$.

9 (McOwen 3.2:6) Let u solve

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 \quad \text { in } \quad \mathbb{R}^{n} \times(0, \infty) \\
u=g, \quad u_{t}=h \quad \text { on } \quad \mathbb{R}^{n} \times\{0\}
\end{array}\right.
$$

where $g, h \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
a) For $n=3$, show that

$$
|u(x, t)| \leq \frac{C}{t} \quad \text { in } \quad \mathbb{R}^{3} \times(0, \infty) .
$$

b) Is a similar result true for $n=2$?

10 Suppose Ω is a bounded domain with smooth boundary, and suppose

$$
u \in C^{2}(\Omega \times(0, T)) \cap C^{1}(\bar{\Omega} \times(0, T))
$$

satisfies

$$
\begin{cases}u_{t}=\Delta u & \text { in } \Omega \times(0, T) \\ u=0 \quad \text { or } \quad \frac{\partial u}{\partial v}=0 & \text { in } \quad \partial \Omega \times(0, T),\end{cases}
$$

Prove that

$$
f(t)=\int_{\Omega} u(x, t)^{2} d x \quad(0<t<T),
$$

is nonincreasing.
Hint: Show that $u\left(u_{t}-\Delta u\right)=\frac{1}{2} \partial_{t}\left(u^{2}\right)-\operatorname{div}(u \nabla u)+|\nabla u|^{2}$, and integrate over Ω.

11 a) (McOwen 4.1:8) Hopf Lemma.
Assume:
(i) Ω is a bounded domain in \mathbb{R}^{n} satisfying an interior ball condition: for every $x \in \partial \Omega$ there exists a ball $B=\left\{y:\left|y-y_{0}\right|<r\right\}$ such that $B \subset \Omega$ and $\partial \Omega \cap \bar{B}=\{x\}$
(ii) $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfy

$$
\Delta u \geq 0 \text { in } \Omega .
$$

(iii) There is an $x_{0} \in \partial \Omega$ such that $u\left(x_{0}\right)=\max _{\bar{\Omega}} u$.

Prove that either

$$
\frac{\partial u}{\partial v}\left(x_{0}\right)>0 \quad \text { or } \quad u \equiv \text { constant } \quad \text { in } \bar{\Omega},
$$

where v denote the unit exterior normal of $\partial \Omega$ and $\frac{\partial u}{\partial v}(x)=v(x) \cdot \nabla u(x)$ for $x \in \partial \Omega$.
b) Use part a) to prove the strong maximum principle:

If (i) and (ii) hold, then either $u(x)<\max _{\bar{\Omega}} u$ for all $x \in \Omega \quad$ or $\quad u \equiv \operatorname{constant}$ in $\bar{\Omega}$.
c) (Uniqueness results for the Robin and Neumann problem)

Let $u, v \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ be two solutions of

$$
\begin{cases}\Delta u=f(x) & \text { in } \Omega \\ \frac{\partial u}{\partial v}+\alpha(x) u=h(x) & \text { on } \quad \partial \Omega,\end{cases}
$$

where $\alpha \geq 0, f, \alpha, h$ are continuous, and Ω satisfy (i).
Use part a) and b) to prove that
(1) $\alpha \not \equiv 0$ (Robin case) $\Rightarrow u \equiv v$ in $\bar{\Omega}$.
(2) $\alpha \equiv 0$ (Neumann case) $\Rightarrow u-v \equiv$ constant in $\bar{\Omega}$.

12 Let A, B, C, and R be real $n \times n$-matrices.
We say that $A=\left(a_{i j}\right)$ is positive definite (resp. positive semi-definite if

$$
\sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j}>0 \quad(\text { resp. } \geq 0) \quad \text { for all } \xi \in \mathbb{R}^{n}, \xi \neq 0
$$

(And A is negative (semi) definite if $-A$ is positive (semi) definite).
(a) Show that if A is positive semi-definite, then $a_{i i} \geq 0$ for $i=1, \ldots, n$.

Moreover, if λ is an eigenvalue of A, then $\lambda \geq 0$.
(b) Prove that if A and B are symmetric and positive semi-definite, then $\operatorname{tr}(A B) \geq 0$, where tr denotes the trace. (Hint: Diagonalize A using an orthonormal basis of eigenvectors. Use part (a) and the fact that $\operatorname{tr}\left(R^{t} C R\right)=\operatorname{tr}(C)$ for all C if R is an orthogonal matrix.)

13 Let $u: \Omega \rightarrow \mathbb{R}$ be C^{2}. Prove that if u has a local maximum at at point $x_{0} \in \Omega$, then the symmetric $n \times n$-matrix $D^{2} u\left(x_{0}\right)$ with entries $\partial_{i} \partial_{j} u\left(x_{0}\right)$ is negative semi-definite.
(Hint: Given $\xi \in \mathbb{R}^{n}, \xi \neq 0$, define $\phi(t)=u\left(x_{0}+t \xi\right)$ for t in a small interval around 0 .)

14 The purpose of this exercise is to prove the weak maximum principle (cf. (16) in Section 4.1 of McOwen) for a more general elliptic operator than the Laplace operator.
Let Ω be a bounded domain in \mathbb{R}^{n}, and let

$$
L=\sum_{i, j=1}^{n} a_{i j}(x) \partial_{i} \partial_{j}+\sum_{i=1}^{n} b_{i}(x) \partial_{i},
$$

where $a_{j k}$ and b_{j} are continuous functions on $\bar{\Omega}$ and the matrix ($a_{i j}$) is symmetric (so $a_{j k}=a_{k j}$) and positive definite, i.e.,

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j}>0 \quad \text { for all } x \in \bar{\Omega} \text { and all } \xi \in \mathbb{R}^{n} \text { with } \xi \neq 0 \tag{1}
\end{equation*}
$$

(The operator L is elliptic and (1) is called the ellipticity condition.)
(a) Show that if $v \in C^{2}(\Omega)$ satisfies $L v>0$ in Ω, then v cannot have a local maximum in Ω. (Hint: Use the two previous problems to get a contradiction if we assume that a local maximum exists.)
(b) Show that if $x_{0} \in \mathbb{R}^{n} \backslash \bar{\Omega}$ and $M>0$ is sufficiently large, then $w(x)=\exp \left(-M\left|x-x_{0}\right|^{2}\right)$ satisfies $L w>0$ in Ω.
(c) Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and that $L u=0$ in Ω. Prove that

$$
\max _{\bar{\Omega}} u=\max _{\partial \Omega} u
$$

(Hint: Show that this conclusion holds for $v=u+\varepsilon w$, where w is as above and $\varepsilon>0$.)

